scholarly journals To Evaluate the Effect of Water Temperature and Duration of Immersion on the Marginal Accuracy and Microhardness of Provisional Restoration: An In Vitro Study

2020 ◽  
Vol 8 (03) ◽  
pp. 115-126
Author(s):  
Sanjan Verma ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Ritu Batra ◽  
...  

Abstract Introduction Provisional restoration is a critical component of fixed prosthodontics treatment, which must satisfy many inter-relative factors such as biological, mechanical, and esthetic. These restorations should have accurate marginal adaptation and optimum strength to maintain functional demands. The present “in vitro” study was conducted to evaluate the effect of water temperature and duration of immersion, on the marginal adaptation and microhardness of four different commercially available provisional restorative materials. Materials and Methods The 240 specimens were then seated on the stainless-steel die which simulated the prepared tooth, and evaluated for the marginal gap for four different provisional restorative materials and divided into four different groups A, B, C, and D. Each group was further divided into six subgroups according to temperature of water and time of immersion. In each group the samples were immersed in water at 20, 30, and 40 degrees, respectively for 5 and 10-minutes duration. Four different temporary restorative materials for crown fabrication were loaded each time to make temporary crowns. Results Each sample was placed under travelling stereoscopic microscope (20× magnification) and photographed. Results for each surface were obtained, and the average of three surfaces was calculated. Knoop hardness was measured using a microhardness tester. The study was subjected to statistical analysis, to know the statistical significance, of the effect of difference in time and temperature changes at the time of final polymerization on surface microhardness and marginal integrity of four different provisional restorative materials. Discussion The mean marginal discrepancies of bis-GMA (group B) at 20, 30, and 40°C for 5 and 10 minutes in water were smaller than the results of other groups. Microhardness evaluation showed that the poly ethyl methacrylate (PEMA) type resin exhibited significantly lower microhardness than the bis-acryl resin composites (Protemp 4 and Systemp.c&b) at both time and temperature intervals. Conclusion The bis-acryl composites material has the least marginal discrepancy in comparison with PEMA and polymethyl methacrylate (PMMA). The bis-acryl composites materials exhibit superior surface microhardness followed by PEMA and PMMA.

2017 ◽  
Vol 63 (4) ◽  
pp. 3933-3945
Author(s):  
Khaled Haggag ◽  
Muhammad Abbas ◽  
Zainab EL Sharkawy

2014 ◽  
Vol 60 (5) ◽  
pp. 200-203
Author(s):  
Andreea Borş ◽  
Cristina Molnar-Varlam ◽  
Melinda Székely

Abstract Objective: The aim of this in vitro study was to evaluate the influence of erosive conditions on the wear resistance of aesthetic direct restorative materials. Methods: Six dental filling materials were tested: two composites (Filtek Z550 and X-tra fil), two compomers (Dyract Extra and Twinky Star) and two glass ionomers (Ketac Molar and Fuji II LC). Twenty disks (10mm×2mm) of each material were prepared (n=120) and kept in artificial saliva at 37˚C for 24 hours. Specimens were cycled in acidic soft drink (Coca-Cola) 5×/day, for 5’, over 30 days. Initial surface roughness ISR (Ra-μm) and final surface roughness FSR were measured using a profilometer. The wear rate was calculated as difference of final minus the initial roughness (ΔSR=FSR-ISR). For statistical analysis t-test and one-way ANOVA test were used by GraphPad Prism version 5.03 statistical software. The level of significance was set at p<0.05. Results: The erosive wear rates (mean±SD, μm) after exposure to acidic beverage were: 0.30±0.03 (Ketac Molar), 0.28±0.04 (Fuji II LC), 0.27±0.00 (Filtek Z550), 0.23±0.01 (X-tra fil), 0.20±0.00 (Twinky Star) and 0.14±0.01 Dyract Extra, respectively. There were significant differences between the tested materials (p<0.05). Conclusions: Dental filling materials had different behaviour under the same erosive condition, however all investigated aesthetic restorative materials showed surface degradation. These findings suggest that erosive wear resistance of tooth coloured restoratives could influence their longevity in intraoral acidic conditions. Acknowledgements: The study was supported by the Internal Research Grant no. 5/30.01.2013 of the University of Medicine and Pharmacy of Tirgu Mureş.


2015 ◽  
Vol 7 (4) ◽  
pp. 355-360 ◽  
Author(s):  
Raha Tafaroji ◽  
Mina Biria ◽  
Farhad Ameri ◽  
Hassan Torabzadeh ◽  
Pasha Qahari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document