Robotic-Assisted Peripheral Nerve Surgery: A Systematic Review

Author(s):  
Lisa Wen-Yu Chen ◽  
Mei Goh ◽  
Raymond Goh ◽  
Yin-Kai Chao ◽  
Jung-Ju Huang ◽  
...  

Abstract Background Robotic-assisted techniques are a tremendous revolution in modern surgery, and the advantages and indications were well discussed in different specialties. However, the use of robotic technique in plastic and reconstructive surgery is still very limited, especially in the field of peripheral nerve reconstruction. This study aims to identify current clinical applications for peripheral nerve reconstruction, and to evaluate the advantages and disadvantages to establish potential uses in the future. Methods A review was conducted in the literatures from PubMed focusing on currently published robotic peripheral nerve intervention techniques. Eligible studies included related animal model, cadaveric and human studies. Reviews on robotic microsurgical technique unrelated to peripheral nerve intervention and non-English articles were excluded. The differences of wound assessment and nerve management between robotic-assisted and conventional approach were compared. Results Total 19 studies including preclinical experimental researches and clinical reports were listed and classified into brachial plexus reconstruction, peripheral nerve tumors management, peripheral nerve decompression or repair, peripheral nerve harvesting, and sympathetic trunk reconstruction. There were three animal studies, four cadaveric studies, eight clinical series, and four studies demonstrating clinical, animal, or cadaveric studies simultaneously. In total 53 clinical cases, only 20 (37.7%) cases were successfully approached with minimal invasive and intervened robotically; 17 (32.1%) cases underwent conventional approach and the nerves were intervened robotically; 12 (22.6%) cases converted to open approach but still intervened the nerve by robot; and 4 (7.5%) cases failed to approach robotically and converted to open surgery entirely. Conclusion Robotic-assisted surgery is still in the early stage in peripheral nerve surgery. We believe the use of the robotic system in this field will develop to become popular in the future, especially in the fields that need cooperation with other specialties to provide the solutions for challenging circumstances.

2018 ◽  
Vol 44 (videosuppl1) ◽  
pp. Intro
Author(s):  
Robert J. Spinner ◽  
Holly S. Gilmer ◽  
Gregory R. Trost

If a single picture is worth a thousand words, then a video, by logical extension, would be priceless. This edition showcases peripheral nerve surgery in all its grandeur and preserves it for posterity. Classic and novel surgical techniques are shown related to tumor biopsy or resection; nerve decompression for entrapment; and nerve reconstruction with direct repair or nerve transfer. Akin to a nautical chart filled with detailed maps for sailors, this Neurosurgical Focus Video Atlas provides navigational tools for neurosurgeons. The shared underlying message is that a sound knowledge of anatomy can lead to innovation (i.e., creative approaches or solutions) and excellence (i.e., improved patient outcomes).


2011 ◽  
Vol 114 (5) ◽  
pp. 1442-1448 ◽  
Author(s):  
R. Shane Tubbs ◽  
Neal Patel ◽  
Brian Vala Nahed ◽  
Aaron A. Cohen-Gadol ◽  
Robert J. Spinner

By the time Harvey Cushing entered medical school, nerve reconstruction techniques had been developed, but peripheral nerve surgery was still in its infancy. As an assistant surgical resident influenced by Dr. William Halsted, Cushing wrote a series of reports on the use of cocaine for nerve blocks. Following his residency training and a hiatus to further his clinical interests and intellectual curiosity, he traveled to Europe and met with a variety of surgeons, physiologists, and scientists, who likely laid the groundwork for Cushing's increased interest in peripheral nerve surgery. Returning to The Johns Hopkins Hospital in 1901, he began documenting these surgeries. Patient records preserved at Yale's Cushing Brain Tumor Registry describe Cushing's repair of ulnar and radial nerves, as well as his exploration of the brachial plexus for nerve repair or reconstruction. The authors reviewed Harvey Cushing's cases and provide 3 case illustrations not previously reported by Cushing involving neurolysis, nerve repair, and neurotization. Additionally, Cushing's experience with facial nerve neurotization is reviewed. The history, physical examination, and operative notes shed light on Cushing's diagnosis, strategy, technique, and hence, his surgery on peripheral nerve injury. These contributions complement others he made to surgery of the peripheral nervous system dealing with nerve pain, entrapment, and tumor.


Author(s):  
L. Rasulic ◽  
M. Samardzic ◽  
V. Bascarevic ◽  
M. Micovic ◽  
I. Cvrkota ◽  
...  

Neurosurgery ◽  
2010 ◽  
Vol 66 (4) ◽  
pp. 784-787 ◽  
Author(s):  
Philipp Slotty ◽  
Patrick Kröpil ◽  
Mark Klingenhöfer ◽  
Hans-Jakob Steiger ◽  
Daniel Hänggi ◽  
...  

Abstract OBJECTIVE Exact intraoperative localization of pathologies in spinal and peripheral nerve surgery is not easily achieved. In spinal surgery, intraoperative fluoroscopy is the common method for identification of the level affected. It seldom visualizes the pathology itself and is prone to error in identifying anatomic disorders and superimposing structures. In peripheral nerve surgery, intraoperative fluoroscopy is of little value. The present technical study was conducted to evaluate the feasibility of using a preoperative computed tomography–guided needle marking system, which was previously developed for use in gynecology. The goal was to reduce intraoperative localization error and radiation exposure to patients and operating room personnel. METHODS We used a flexible hooked-wire needle marking system, which has previously been used for preoperative marking of breast lesions, to localize and tag spinal and peripheral nerve pathologies. Marking was carried out under computed tomographic control before surgery. Seven illustrative cases were chosen for this report: 6 patients with disorders of the spine and 1 patient with a peripheral nerve schwannoma. RESULTS No adverse reactions, aside from minor discomfort, were observed in this study. In all cases, the needle could be used as a reliable guide for the surgical approach and led directly to the pathology. In no case was additional intraoperative fluoroscopy needed. The level of radiation exposure to the patient as a result of computed tomography–based marking was similar to or less than that encountered in conventional intraoperative x-ray localization. Radiation exposure to the operating room personnel was eliminated by this method. CONCLUSION Preoperative marking of spinal level or peripheral nerve pathologies with a flexible hooked-wire needle marking system is feasible and appears to be safe and useful for neurosurgical spinal and peripheral procedures.


Sign in / Sign up

Export Citation Format

Share Document