In vivo Suppression der Hepatitis B Virus Expression und Replikation durch das Hepatitis C Core Protein in einem hydrodynamischen Transfektionsmodell

2005 ◽  
Vol 43 (05) ◽  
Author(s):  
C Gehrke ◽  
C Klein ◽  
N Woller ◽  
MP Manns ◽  
C Trautwein
2017 ◽  
Vol 174 (14) ◽  
pp. 2261-2272 ◽  
Author(s):  
Yiping Li ◽  
Zhengwen Liu ◽  
Lingyun Hui ◽  
Xi Liu ◽  
Ai Feng ◽  
...  

2021 ◽  
Vol 102 (12) ◽  
Author(s):  
Sujeong Lee ◽  
Hyunyoung Yoon ◽  
Jiwoo Han ◽  
Kyung Lib Jang

Most clinical and experimental studies have suggested that hepatitis C virus (HCV) is dominant over hepatitis B virus (HBV) during coinfection, although the mechanism remains unclear. Here, we found that HCV core protein inhibits HBV replication by downregulating HBx levels during coinfection in human hepatoma cells. For this effect, HCV core protein increased reactive oxygen species levels in the mitochondria and activated the ataxia telangiectasia mutated-checkpoint kinase two pathway in the nucleus, resulting in an upregulation of p53 levels. Accordingly, HCV core protein induced p53-dependent activation of seven in absentia homolog one expression, an E3 ligase of HBx, resulting in the ubiquitination and proteasomal degradation of HBx. The effect of the HCV core protein on HBx levels was accurately reproduced in both a 1.2-mer HBV replicon and in vitro HBV infection systems, providing evidence for the inhibition of HBV replication by HCV core protein. The present study may provide insights into the mechanism of HCV dominance in HBV- and HCV-coinfected patients.


1993 ◽  
Vol 67 (10) ◽  
pp. 6064-6070 ◽  
Author(s):  
A Yoshikawa ◽  
T Tanaka ◽  
Y Hoshi ◽  
N Kato ◽  
K Tachibana ◽  
...  

Hepatology ◽  
2012 ◽  
Vol 56 (6) ◽  
pp. 2268-2276 ◽  
Author(s):  
Wangta Liu ◽  
Jim-Ray Chen ◽  
Chih-Hao Hsu ◽  
Yen-Hsing Li ◽  
Yi-Meng Chen ◽  
...  

2019 ◽  
Vol 93 (22) ◽  
Author(s):  
Szu-Yao Wu ◽  
Ya-Shu Chang ◽  
Tien-Hua Chu ◽  
Chiaho Shih

ABSTRACT Hepatitis B virus (HBV) core protein (HBc) accumulates frequent mutations in natural infection. Wild-type HBV is known to secrete predominantly virions containing mature DNA genome. However, a frequent naturally occurring HBc variant, I97L, changing from an isoleucine to a leucine at amino acid 97, exhibited an immature secretion phenotype in culture, which preferentially secretes virions containing immature genomes. In contrast, mutant P130T, changing from a proline to a threonine at amino acid 130, exhibited a hypermaturation phenotype by accumulating an excessive amount of intracellular fully mature DNA genome. Using a hydrodynamic delivery mouse model, we studied the in vivo behaviors of these two mutants, I97L and P130T. We detected no naked core particles in all hydrodynamically injected mice. Mutant I97L in mice exhibited pleiotropic phenotypes: (i) excessive numbers of serum HBV virions containing immature genomes, (ii) significantly reduced numbers of intracellular relaxed-circle and single-stranded DNAs, and (iii) less persistent intrahepatic and secreted HBV DNAs than wild-type HBV. These pleiotropic phenotypes were observed in both immunocompetent and immunodeficient mice. Although mutant P130T also displayed a hypermaturation phenotype in vivo, it cannot efficiently rescue the immature virion secretion of mutant I97L. Unexpectedly, the single mutant P130T exhibited in vivo a novel phenotype in prolonging the persistence of HBV genome in hepatocytes. Taken together, our studies provide a plausible rationale for HBV to regulate envelopment morphogenesis and virion secretion via genome maturity, which is likely to play an important role in the persistence of viral DNA in this mouse model. IMPORTANCE Chronic infection with human hepatitis B virus (HBV) could lead to cirrhosis and hepatoma. At present, there is no effective treatment to eradicate the virus from patients. HBV in chronic carriers does not exist as a single homogeneous population. The most frequent naturally occurring mutation in HBV core protein occurs at amino acid 97, changing an isoleucine to leucine (I97L). One dogma in the field is that only virions containing a mature genome are preferentially secreted into the medium. Here, we demonstrated that mutant I97L can secrete immature genome in mice. Although viral DNA of mutant I97L with immature genome is less persistent than wild-type HBV in time course experiments, viral DNA of mutant P130T with genome hypermaturation, surprisingly, is more persistent. Therefore, virion secretion regulated by genome maturity could influence viral persistence. It remains an open issue whether virion secretion could be a drug target for HBV therapy.


2002 ◽  
Vol 37 (6) ◽  
pp. 855-862 ◽  
Author(s):  
Christian G Schüttler ◽  
Nicola Fiedler ◽  
Katja Schmidt ◽  
Reinald Repp ◽  
Wolfram H Gerlich ◽  
...  

1999 ◽  
Vol 73 (12) ◽  
pp. 10399-10405 ◽  
Author(s):  
Kurt Reifenberg ◽  
Heike Wilts ◽  
Jürgen Löhler ◽  
Petra Nusser ◽  
Ralph Hanano ◽  
...  

ABSTRACT The function of the X protein in the life cycle of mammalian hepadnaviruses is unclear. Based on tissue culture experiments it has been suggested that this protein represents a transcriptional transactivator which might be essential for the expression of the viral core gene. Here we have examined whether the activity of the human hepatitis B virus (HBV) core gene in vivo depends on X coexpression. To this end we compared core gene expression between four lineages of transgenic mice carrying the HBV core gene in cisarrangement with the X gene (cex lineage) and six lineages containing a modified construct in which the start codon of the X gene had been deleted (ce lineage). Whereas all cex lineages consistently exhibited a high-level hepatic core gene expression, the liver-specific core gene expression pattern of the ce lineages was heterogenous with four lineages virtually not expressing the core gene. This defect was due to a strongly reduced transcription since no core mRNA could be detected by Northern blotting. To test whether core gene expression could be restored by providing an intact X gene in trans, we crossbred mice of two lines which expressed no core mRNA or core protein with transgenic mice expressing the X-gene product under the transcriptional regulation of the liver-specific major-urinary-protein promoter/enhancer (MUP-X mice). The introduction of the MUP-X transgene induced core mRNA expression and core protein biosynthesis in the livers of the double-transgenic mice. This demonstrates that the X-gene product has the capacity to transactivate HBV core gene expression in vivo.


Sign in / Sign up

Export Citation Format

Share Document