Dynamics of Rigid Block due to Horizontal Ground Motion

1998 ◽  
Vol 124 (7) ◽  
pp. 713-717 ◽  
Author(s):  
A. Pompei ◽  
A. Scalia ◽  
M. A. Sumbatyan
1973 ◽  
Vol 63 (3) ◽  
pp. 1025-1039
Author(s):  
Bruce M. Douglas ◽  
Thomas E. Trabert

abstract The coupled bending and torsional vibrations of a relatively symmetric 22-story reinforced concrete building in Reno, Nevada are studied. Analytical results are compared with observations obtained during the nuclear explosion FAULTLESS and to ambient vibration data. The fundamental periods of vibration observed during FAULTLESS were (TNS = 1.42, TEW = 1.81, TTORSION = 1.12 sec), and the calculated periods were (TNS = 2.14, TEW = 2.07, TTORSION = 1.90 sec). It was estimated that between 25 and 45 per cent of the total available nonstructural stiffness was required to explain the differences in the observed and calculated fundamental periods. Each floor diaphragm in the system was allowed three degrees of freedom-two translations and a rotation. It was found that coupled torsional motions can influence the response of structural elements near the periphery of the structure. Strong-motion structural response calculations comparing the simultaneous use of both components of horizontal ground motion to a single component analysis showed that the simultaneous application of both components of ground motion can significantly alter the response of lateral load-carrying elements. Differences of the order of 45 per cent were observed in the frames near the ends of the structure. Also, it was shown that the overall response of tall buildings is sensitive not only to the choice of input ground motion but also to the orientation of the structure with respect to the seismic waves.


2020 ◽  
pp. 875529302097098
Author(s):  
Luis A Montejo

This article presents a methodology to spectrally match two horizontal ground motion components to an orientation-independent target spectrum (RotDnn). The algorithm is based on the continuous wavelet transform decomposition and iterative manipulation of the two horizontal components of a seed record. The numerical examples presented follow current ASCE/SEI 7 specifications and therefore maximum-direction spectra (RotD100) are used as target for the match. However, the proposed methodology can be used to match other RotDnn spectra, like the median spectrum (RotD50). It is shown that with the proposed methodology the resulting RotDnn from the modified horizontal components closely match the smooth target RotDnn spectrum, while the response spectrum for each horizontal component continue to exhibit a realistic jagged behavior. The response spectra variability at the component level within suites of spectrally matched motions was found to be of the same order than the variability measured in suites composed of amplitude scaled records. Moreover, the spectrally matched records generated preserved most of the characteristics of the seed records, including the nonlinear characteristics of the time history traces and the period-dependent major axis orientations.


2020 ◽  
Vol 36 (2) ◽  
pp. 463-506 ◽  
Author(s):  
Shu-Hsien Chao ◽  
Brian Chiou ◽  
Chiao-Chu Hsu ◽  
Po-Shen Lin

In this study, a new horizontal ground-motion model is developed for crustal and subduction earthquakes in Taiwan. A novel two-step maximum-likelihood method is used as a regression tool to develop this model. This method simultaneously considers both the correlation between records and the biased sampling because of random truncation. Moreover, additional ground-motion data can be considered to derive more reliable analysis results. The functional form of the proposed ground-motion model is constructed using the response spectrum of the reference ground-motion scenario and different scalings of the source, path, and site to illustrate the ground-motion characteristics. The variabilities in the ground-motion intensity that result from different events, stations, and records are developed individually to derive a single-station sigma. The proposed ground-motion model may be useful for predicting ground-motion intensity and performing site-specific probabilistic seismic hazard analysis in Taiwan.


2014 ◽  
Vol 30 (3) ◽  
pp. 1117-1153 ◽  
Author(s):  
Brian S.-J. Chiou ◽  
Robert R. Youngs

We present an update to our 2008 NGA model for predicting horizontal ground motion amplitudes caused by shallow crustal earthquakes occurring in active tectonic environments. The update is based on analysis of the greatly expanded NGA-West2 ground motion database and numerical simulations. The updated model contains minor adjustments to our 2008 functional form related to style of faulting effects, hanging wall effects, scaling with the depth to top of rupture, scaling with sediment thickness, and the inclusion of additional terms for the effects of fault dip and rupture directivity. In addition, we incorporate regional differences in far-source distance attenuation and site effects between California and other active tectonic regions. Compared to our 2008 NGA model, the predicted medians by the updated model are similar for M > 7 and are lower for M < 5. The aleatory variability is larger than that obtained in our 2008 model.


Sign in / Sign up

Export Citation Format

Share Document