Experimental Study of Vibration Mitigation of Bridge Stay Cables

1999 ◽  
Vol 125 (9) ◽  
pp. 977-986 ◽  
Author(s):  
Y. L. Xu ◽  
S. Zhan ◽  
J. M. Ko ◽  
Z. Yu
2014 ◽  
Vol 487 ◽  
pp. 404-407
Author(s):  
Dong Liang ◽  
Zi Shuo Li

Oil dampers are widely used as a popular countermeasure to mitigate the stay cables vibration. In this study, one actual oil damper designed for some long cable-stayed was experimentally investigated to evaluate the durability. 4 million cycles loading, with frequency of 4 Hz and amplitude of 1 mm, was imposed on the damper. The excitation displacement and damping force were measured and the equivalent damping was calculated from the experimental results. The stiffness effects of dampers behaved during durability tests were also analyzed quantitatively. The test results showed that the dampers were still in good condition after 4 million cycles loading and the dampers temperatures were stable at 50 degree centigrade during the test. According to the durability test results, a model for performance deterioration of damper was proposed to predict the lifetime of oil dampers.


2019 ◽  
Vol 9 (18) ◽  
pp. 3919 ◽  
Author(s):  
Wang ◽  
Yue ◽  
Gao

Recently, inertial mass dampers (IMDs) have shown superior control performance over traditional viscous dampers (VDs) in vibration control of stay cables. However, a single IMD may be incapable of providing sufficient supplemental modal damping to a super-long cable, especially for the multimode cable vibration mitigation. Inspired by the potential advantages of attaching two discrete VDs at different locations of the cable, arranging two external discrete IMDs, either at the opposite ends or the same end of the cable is proposed to further improve vibration mitigation performance of the cable in this study. Complex modal analysis based on the taut-string model was employed and extended to allow for the existence of two external discrete IMDs, resulting in a transcendental equation for complex wavenumbers. Both asymptotic and numerical solutions for the case of two opposite IMDs or the case of two IMDs at the same end of the cable were obtained. Subsequently, the applicability of asymptotic solutions was then evaluated. Finally, parametric studies were performed to investigate the effects of damper positions and damper properties on the control performance of a cable with two discrete IMDs. Results showed that two opposite IMDs can generally provide superior control performance to the cable over a single IMD or two IMDs at the same end. It was also observed that attaching two IMDs at the same end of the cable had the potential to achieve significant damping improvement when the inertial mass of the IMDs is appropriate, which seems to be more promising than two opposite IMDs for practical application.


Sign in / Sign up

Export Citation Format

Share Document