Ambient Vibration Monitoring of a Highway Bridge Undergoing a Destructive Test

2006 ◽  
Vol 11 (5) ◽  
pp. 602-610 ◽  
Author(s):  
Robert G. Lauzon ◽  
John T. DeWolf
Author(s):  
Yozo Fujino ◽  
Masato Abe ◽  
Hajime Shibuya ◽  
Masato Yanagihara ◽  
Masashi Sato ◽  
...  

Forced and ambient dynamic tests of the Hakucho Bridge were carried out to study the dynamic characteristics of this suspension bridge. Dense-array measurement was employed in order to capture not only natural frequencies and damping, but also the mode shapes of the bridge. The natural frequencies and mode shapes obtained from the forced and ambient vibration tests agreed well with those calculated by a three-dimensional finite element model. A new method that combines the random decrement method with the Ibrahim time domain method is proposed to systematically identify the natural frequencies, damping, and mode shapes. This method is successfully applied to ambient vibration data. It is shown that the natural frequency of the first vertical bending mode decreases noticeably as the wind speed increases. It is also shown that the shape of the first vertical bending mode changes slightly near the towers, depending on the wind velocity; this finding indicates that the change may be associated with friction in the bearings at the towers. Finally, application of the Global Positioning System to measure static displacement of the girder is explained.


2003 ◽  
Vol 2003 (94) ◽  
pp. 37-49
Author(s):  
Yozo FUJINO ◽  
Masato ABE ◽  
Tomonori NAGAYAMA ◽  
Kenji IKEDA

Author(s):  
Silvia Giallini ◽  
Enrico Paolucci ◽  
Pietro Sirianni ◽  
Dario Albarello ◽  
Iolanda Gaudiosi ◽  
...  

ABSTRACT This article focuses on the full exploitation of geological and economically viable geophysical surveys for the seismic characterization of the shallow subsoil in the frame of microzonation studies in urban areas where economic resources for detailed seismic response analyses are scarce. In these conditions, the outcomes of inexpensive geophysical surveys (e.g., based on ambient vibration monitoring or surface-wave prospecting) must be fully exploited. To reduce the uncertainties related to these kinds of procedures, their joint interpretation in the light of geological evidence is mandatory. To this purpose, we propose the application of principal component analysis to combine the results of distributed single-station ambient vibration measurements (horizontal-to-vertical spectral ratio [HVSR] technique) to provide a preliminary zonation of the study area. The zones identified in this way are then characterized by considering the available geognostic boreholes, VS profiles deduced by the joint inversion of HVSR curves, and available Rayleigh-wave dispersion curves deduced from active seismic prospecting (multichannel analysis of surface-waves technique). The final outcome allows the definition of a preliminary seismic model of the study area, which is also constrained by the available geological data deduced from on-purpose surveys. The proposed approach has been applied to the city of Gori (Georgia). The proposed approach allowed a reliable assessment of buried geometries, geological domains, and the distribution of lithofacies, which can control the local seismic response. In detail, the major role of paleovalley infills and interfluve domains has been enlightened by adding in evidence concerning the peculiar stratigraphic relationships and buried morphologies, which may determine 1D and 2D resonance effects.


2005 ◽  
Author(s):  
Helmut Wenzel ◽  
Dieter Pichler

2011 ◽  
Vol 31 (11) ◽  
pp. 1496-1510 ◽  
Author(s):  
Ahmet Can Altunişik ◽  
Alemdar Bayraktar ◽  
Barış Sevim ◽  
Şevket Ateş

Sign in / Sign up

Export Citation Format

Share Document