ambient vibration tests
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 25)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 4 (3) ◽  
pp. 163-183
Author(s):  
Ahmet Can Altunışık ◽  
Volkan Kahya ◽  
Ali Yetişken

This work aims to experimentally show the effectiveness of annular cylindrical tuned liquid dampers (ACTLDs) on the classical tuned liquid column dampers (TLCDs) under the effect of inclined ground motion. For experimental measurements, a single-story model structure constituted by two plates at the top and bottom connected by four columns was constructed. Since the water length within the tuned liquid dampers (TLDs) is a very important parameter that affects the performance of the absorber, ACTLD and TLCD devices were designed such that their total water lengths be equal for comparison purposes. The modal characteristics of the model structure were determined by ambient vibration tests. The resonant frequency, head-loss coefficient, damping ratio, and water height-frequency diagram of ACTLD and TLCD devices were obtained experimentally through the shaking table tests. Then, the shaking table tests on the model structure with and without the absorbers under consideration were performed to obtain the acceleration and displacement time-histories and the damping ratio for the coupled system. In experimental tests, different excitation directions from 0 to 90 deg were considered. Results of the study show that ACTLDs are better than TLCDs at suppressing vibrations caused by ground motions acting on the structure at oblique angles.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Enrique García-Macías ◽  
Filippo Ubertini

AbstractOperational Modal Analysis (OMA) is becoming a mature and widespread technique for Structural Health Monitoring (SHM) of engineering structures. Nonetheless, while proved effective for global damage assessment, OMA-based techniques can hardly detect local damage with little effect upon the modal signatures of the system. In this context, recent research studies advocate for the use of wave propagation methods as complementary to OMA to achieve local damage identification capabilities. Specifically, promising results have been reported when applied to building-like structures, although the application of Seismic Interferometry to other structural typologies remains unexplored. In this light, this work proposes for the first time in the literature the use of ambient noise deconvolution interferometry (ANDI) to the structural assessment of long bridge structures. The proposed approach is exemplified with an application case study of a multi-span reinforced-concrete (RC) viaduct: the Chiaravalle viaduct in Marche Region, Italy. To this aim, ambient vibration tests were performed on February 4$$^{\text {th}}$$ th and 7$$^{\text {th}}$$ th 2020 to evaluate the lateral and longitudinal dynamic behaviour of the viaduct. The recorded ambient accelerations are exploited to identify the modal features and wave propagation properties of the viaduct by OMA and ANDI, respectively. Additionally, a numerical model of the bridge is constructed to interpret the experimentally identified waveforms, and used to illustrate the potentials of ANDI for the identification of local damage in the piers of the bridge. The presented results evidence that ANDI may offer features that are quite sensitive to damage in the bridge substructure, which are often hardly identifiable by OMA.


Author(s):  
Stefania Degli Abbati ◽  
Paolo Morandi ◽  
Serena Cattari ◽  
Enrico Spacone

AbstractThis paper presents the comparison of the results of modal and nonlinear analyses carried out on a 2-story masonry building with rigid diaphragms, inspired by the Pizzoli’s town hall (AQ, Italy). The case study is one of the Benchmark Structures (labeled BS6) in the “URM nonlinear modelling–Benchmark project” funded by the Italian Department of Civil Protection (DPC) within the framework of the ReLUIS projects. The building has been instrumented since 2009 with a permanent monitoring system by the Osservatorio Sismico delle Strutture (OSS) of the DPC and was hit by the 2016/2017 Central Italy earthquake sequence. In the research first phase, modal and nonlinear static analyses were carried out in a blind prediction, without any preliminary calibration of the models, but referring only to commonly made assumptions on materials and modelling. Five computer programs based on the Equivalent Frame Model (EFM) approach were used. Four different structural configurations were considered: with weak spandrels (A), with tie rods coupled to spandrels (B), with RC ring beams coupled to spandrels (C) and with “shear type” idealization (D). In the research second phase, two of the developed EFMs were calibrated in the elastic range using the results of available Ambient Vibration Tests (AVTs). The models were then validated in the nonlinear range by simulating the dynamic response of the structure recorded during the mainshocks of the 2016/2017 Central Italy earthquake. Recorded and numerical results were compared at both the global and local scale.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yingzhi Xia ◽  
Hui Li ◽  
Zhezhe Fan ◽  
Jiyong Xiao

Modal parameters are important parameters for the dynamic response analysis of structures. An output-only modal parameter identification technique based on Hilbert Vibration Decomposition (HVD) is developed herein for structural modal parameter identification to (1) obtain the Free Decay Response (FDR) of a structure through free vibration or ambient vibration tests, (2) decompose the FDR into modal responses using HVD, and (3) calculate the instantaneous frequencies and instantaneous damping ratios of the modal responses to obtain the modal frequencies and modal damping ratios. A series of numerical examples are examined to demonstrate the efficiency and highlight the superiorities of the proposed method relative to the empirical model decomposition-based (EMD-based) method. The robustness of the proposed method to noises is also investigated and proved to be positive effect. The proposed method is proved to be efficient in modal parameter identification for both linear and nonlinear systems, with better frequency resolution, and it can be applied to systems with closely spaced modes and low-energy mode.


2021 ◽  
pp. 205-218
Author(s):  
Giuseppe Santarsiero ◽  
Alessandra De Angelis ◽  
Vincenzo Manfredi ◽  
Francesco Santamato ◽  
Angelo Masi ◽  
...  

Author(s):  
Gian Paolo Cimellaro ◽  
Marco Domaneschi ◽  
Ali Zamani Noori ◽  
Valentina Villa

This paper focuses on the vulnerability assessment of a civic tower built in 1512, which is now considered a national monument. It is the original bell tower of S. Ambrogio church that was destroyed in 1809. Experimental investigations have been carried out on this historical tower. First, detailed investigations have been carried out to identify the geometry of the tower as well as the mechanical features of the constituting materials. Then, ambient vibration tests have been applied using five Micro Electro-Mechanical Systems (MEMS) sensors to detect of the main dynamic features, e.g., modal parameters and damping. Two output-only identification methods, including Frequency Domain Decomposition and Random Decrement Techniques, have been used. The outcomes of the modal identification have been employed to inform the FE model. The numerical analysis can be used for vulnerability assessment, providing a valuable picture of possible damage evolution, tower collapse mechanism, and subsequently, useful hints for the execution of structural retrofitting strategies.


Sign in / Sign up

Export Citation Format

Share Document