local seismic response
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 18)

H-INDEX

6
(FIVE YEARS 1)

Author(s):  
Francesca Mancini ◽  
Sebastiano D’Amico ◽  
Giovanna Vessia

ABSTRACT Local seismic response (LSR) studies are considerably conditioned by the seismic input features due to the nonlinear soil behavior under dynamic loading and the subsurface site conditions (e.g., mechanical properties of soils and rocks and geological setting). The selection of the most suitable seismic input is a key point in LSR. Unfortunately, few recordings data are available at seismic stations in near-field areas. Then, synthetic accelerograms can be helpful in LSR analysis in urbanized near-field territories. Synthetic accelerograms are generated by simulation procedures that consider adequately supported hypotheses about the source mechanism at the seismotectonic region and the wave propagation path toward the surface. Hereafter, mainshocks recorded accelerograms at near-field seismic stations during the 2016–2017 Central Italy seismic sequence have been compared with synthetic accelerograms calculated by an extended finite-fault ground-motion simulation algorithm code. The outcomes show that synthetic seismograms can reproduce the high-frequency content of seismic waves at near-field areas. Then, in urbanized near-field areas, synthetic accelerograms can be fruitfully used in microzonation studies.


Geosciences ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Anna Chiaradonna ◽  
Marco Spadi ◽  
Paola Monaco ◽  
Felicia Papasodaro ◽  
Marco Tallini

Many of the urban settlements in Central Italy are placed nearby active faults and, consequently, the ground motion evaluation and seismic site effects under near-fault earthquakes are noteworthy issues to be investigated. This paper presents the results of site investigations, the seismic site characterization, and the local seismic response for assessing the effects induced by the Mw 6.7 2 February 1703, near-fault earthquake at the Madonna delle Fornaci site (Pizzoli, Central Italy) in which notable ground failure phenomena were observed, as witnessed by several coeval sources. Even though recent papers described these phenomena, the geological characteristics of the site and the failure mechanism have never been assessed through in-situ investigations and numerical modeling. Within a project concerning the assessment of soil liquefaction potential and co-seismic ground failure, deep and shallow continuous core drilling, geophysical investigations and in-hole tests have been carried out. Subsequently, the geotechnical model has been defined and the numerical quantification of the different hypotheses of failure mechanisms has been evaluated. Analyses showed that liquefaction did not occur, and the excess pore water pressure induced by the shaking was not the source of the ground failure. Therefore, it was hypothesized that the sinkhole was likely caused by earthquake-induced gas eruption.


GeoHazards ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 430-441
Author(s):  
Gaetano Falcone ◽  
Giuseppe Naso ◽  
Federico Mori ◽  
Amerigo Mendicelli ◽  
Gianluca Acunzo ◽  
...  

The effects induced by the choice of numerical base conditions for evaluating local seismic response are investigated in this technical note, aiming to provide guidelines for professional applications. A numerical modelling of the seismic site response is presented, assuming a one-dimensional scheme. At first, with reference to the case of a homogeneous soil layer overlying a half-space, two different types of numerical base conditions, named rigid and elastic, were adopted to analyse the seismic site response. Then, geological setting, physical and mechanical properties were selected from Italian case studies. In detail, the following stratigraphic successions were considered: shallow layer 1 (shear wave velocity, VS, equal to 400 m/s), layer 2 (VS equal to 600 m/s) and layer 3 (VS equal to 800 m/s). In addition, real signals were retrieved from the web site of the Italian accelerometric strong motion network. Rigid and elastic base conditions were adopted to estimate the ground motion modifications of the reference signals. The results are presented in terms of amplification factors (i.e., ratio of integral quantities referred to free-field and reference response spectra) and are compared between the adopted numerical models.


Author(s):  
Silvia Giallini ◽  
Enrico Paolucci ◽  
Pietro Sirianni ◽  
Dario Albarello ◽  
Iolanda Gaudiosi ◽  
...  

ABSTRACT This article focuses on the full exploitation of geological and economically viable geophysical surveys for the seismic characterization of the shallow subsoil in the frame of microzonation studies in urban areas where economic resources for detailed seismic response analyses are scarce. In these conditions, the outcomes of inexpensive geophysical surveys (e.g., based on ambient vibration monitoring or surface-wave prospecting) must be fully exploited. To reduce the uncertainties related to these kinds of procedures, their joint interpretation in the light of geological evidence is mandatory. To this purpose, we propose the application of principal component analysis to combine the results of distributed single-station ambient vibration measurements (horizontal-to-vertical spectral ratio [HVSR] technique) to provide a preliminary zonation of the study area. The zones identified in this way are then characterized by considering the available geognostic boreholes, VS profiles deduced by the joint inversion of HVSR curves, and available Rayleigh-wave dispersion curves deduced from active seismic prospecting (multichannel analysis of surface-waves technique). The final outcome allows the definition of a preliminary seismic model of the study area, which is also constrained by the available geological data deduced from on-purpose surveys. The proposed approach has been applied to the city of Gori (Georgia). The proposed approach allowed a reliable assessment of buried geometries, geological domains, and the distribution of lithofacies, which can control the local seismic response. In detail, the major role of paleovalley infills and interfluve domains has been enlightened by adding in evidence concerning the peculiar stratigraphic relationships and buried morphologies, which may determine 1D and 2D resonance effects.


2021 ◽  
Vol 11 (7) ◽  
pp. 3180
Author(s):  
Antonio Cavallaro ◽  
Antonio Ferraro ◽  
Salvatore Grasso ◽  
Antonio Puccia

The Caronia area is located in the Tyrrhenian north-eastern sector of Sicily (Italy). Starting in 2010, attention focused on the study of landslides phenomena that occurred in this area, which caused significant economic damage to buildings and infrastructures and loss of productive activities. The site is characterized by geotechnical, geological and morphological heterogeneity, and for this reason the site is particularly prone to seismic topographic amplification effects. In this paper, the authors carried out numerical studies focused on the topographic seismic effect evaluation concerning the slope affected by the landslide phenomena. For this site, geotechnical characterization was available concerning both in-situ and laboratory tests; boreholes, piezometers, down-hole tests, multichannel analysis of surface waves tests, seismic tomographies and inclinometer measurements were carried out. Furthermore, 1-D and 2-D local seismic response analyses were carried out by using different synthetic seismograms related to the earthquake of Messina and Reggio Calabria on 28 December 1908. The results of the numerical analyses are presented in terms of response seismograms and response spectra at the surface.


2021 ◽  
Vol 80 (7) ◽  
Author(s):  
S. Trevisani ◽  
F. Pettenati ◽  
S. Paudyal ◽  
D. Sandron

AbstractThis study reports the geostatistical analysis of a set of 40 single-station horizontal-to-vertical spectral ratio (HVSR) passive seismic survey data collected in the Kathmandu basin (Nepal). The Kathmandu basin is characterized by a heterogeneous sedimentary cover and by a complex geo-structural setting, inducing a high spatial variability of the bedrock depth. Due to the complex geological setting, the interpretation and analysis of soil resonance periods derived from the HVSR surveys is challenging, both from the perspective of bedrock depth estimation as well as of seismic-site effects characterization. To exploit the available information, the HVSR data are analyzed by means of a geostatistical approach. First, the spatial continuity structure of HVSR data is investigated and interpreted taking into consideration the geological setting and available stratigraphic and seismic information. Then, the exploitation of potential auxiliary variables, based on surface morphology and distance from outcropping bedrock, is evaluated. Finally, the mapping of HVSR resonance periods, together with the evaluation of interpolation uncertainty, is obtained by means of kriging with external drift interpolation. This work contributes to the characterization of local seismic response of the Kathmandu basin. The resulting map of soil resonance periods is compatible with the results of preceding studies and it is characterized by a high spatial variability, even in areas with a deep bedrock and long resonance periods.


2021 ◽  
Author(s):  
Klodian Skrame ◽  
Diego Albini ◽  
Carlo Moriconi ◽  
Christian Comotti ◽  
Redi Muci ◽  
...  

<p>In this work, it is intended to highlight the indispensable significance of the geophysical surveys on the hydrogeological research and on the seismic risk mitigation.</p><p>This paper describes the acquisition methodologies, the instrumentation used, the techniques and methods of inversion / interpretation and the results of a hybrid geophysical survey carried out for the reconstruction of the 3-D geological modeling of the Borgo Montello case study, in the Province of Latina, in Italy.</p><p>The aim of the study was to test the use of hybrid geophysical surveys in order to obtain a detailed geological-stratigraphic and hydrogeological modeling of the subsoil, its interpretation in terms of flow model and to identify the relationships between the parameters that define the geological-hydrogeological-stratigraphic model with the local seismic ground motion amplification of the site.</p><p>From a geological point of view, the study area in composed by two main geological formations. The most superficial one is characterized by sedimentary deposits linked to the filling of the Pontine depression: composed by alternations of clays, silty clays and silts, with a subordinate component of silty sands. The second lithological type is linked to the deposition of pyroclastic deposits from the Lazio volcano and in particular from the deposits of reddish pozzolane alternating with thickened tuff, the so-called "Tufo lionato".</p><p>A research approach that integrated different geophysical methods, as: resistivity, induced polarization electrical tomography and seismic refraction and high resolution reflection methods were carried out to reproduce the thickness and the extension of the over mentioned deposits.</p><p>Afterwards, having obtained 5 independent models (seismic reflection section, seismic refraction section, electrical resistivity tomography, electrical tomography and local seismic amplification section) the authors proceeded, through the k-means algorithm methods, for the analysis of the bivariate dataset cluster, in order to identify the relationships between the 5 sets of variables. The proposed methodology was focuses on characterizing the aquifer potential by using simultaneously all the geophysical parameters obtained together with the stratigraphic data, in order to reduce the uncertainties and ambiguity in the interpretation of the geophysical data for a better modeling of the subsoil.</p><p>The obtained results were compared with a collection of existing boreholes, well logs, geotechnical and geophysical data. The 3-D geological models match quite well with the information determined from these previous works.</p><p>Lastly, based on the three-dimensional modeling of the subsurface structures, a Local Seismic Response study was carried out.</p>


2020 ◽  
Vol 80 (1) ◽  
pp. 179-199
Author(s):  
M. Moscatelli ◽  
G. Vignaroli ◽  
A. Pagliaroli ◽  
R. Razzano ◽  
A. Avalle ◽  
...  

AbstractNowadays, policies addressed to prevention and mitigation of seismic risk need a consolidated methodology finalised to the assessment of local seismic response in explosive volcanic settings. The quantitative reconstruction of the subsoil model provides a key instrument to understand how the geometry and the internal architecture of outcropping and buried geological units have influence on the propagation of seismic waves. On this regard, we present a multidisciplinary approach in the test area of the Stracciacappa maar (Sabatini Volcanic District, central Italy), with the aim to reconstruct its physical stratigraphy and to discuss how subsoil heterogeneities control the 1D and 2D local seismic response in such a volcanic setting. We first introduce a new multidisciplinary dataset, including geological (fieldwork and log from a 45-m-thick continuous coring borehole), geophysical (electrical resistivity tomographies, single station noise measurements, and 2D passive seismic arrays), and geotechnical (simple shear tests performed on undisturbed samples) approaches. Then, we reconstruct the subsoil model for the Stracciacappa maar in terms of vertical setting and distribution of its mechanical lithotypes, which we investigate for 1D and 2D finite element site response analyses through the application of two different seismic scenarios: a volcanic event and a tectonic event. The numerical modelling documents a significant ground motion amplification (in the 1–1.5 Hz range) revealed for both seismic scenarios, with a maximum within the centre of the maar. The ground motion amplification is related to both 1D and 2D phenomena including lithological heterogeneity within the upper part of the maar section and interaction of direct S-waves with Rayleigh waves generated at edges of the most superficial lithotypes. Finally, we use these insights to associate the expected distribution of ground motion amplification with the physical stratigraphy of an explosive volcanic setting, with insights for seismic microzonation studies and local seismic response assessment in populated environments.


2020 ◽  
Author(s):  
Germán Cervigón Tomico ◽  
Diana Patricia Fernández del Campo ◽  
Efrén Fernández Agudo ◽  
Andres Felipe García Salamanca ◽  
Rory Tisdall ◽  
...  

<p>The majority of casualties associated with historical eruptions on Tenerife (Canary Islands) were linked to the seismicity preceding and accompanying the eruptive activity. Therefore, the volcano-tectonic seismicity constitutes a relevant hazard. Moreover, the tectonics of the archipelago and paleoseismological evidences in the southern part of the island, suggest the possibility of destructive earthquakes on the island and its surroundings.</p><p>The complex geology of the island also affects seismic wave propagation and can lead to local seismic amplification phenomena. Actually, a recent moderate earthquake (Ml=4.4) located east of the island, has been recorded by a dense broadband network: Red Sísmica Canaria (C7) operated by Instituto Volcanológico de Canarias (INVOLCAN) showing relevant local seismic amplification effects at different sites. For this reason, in the spring of 2019, INVOLCAN started a research program, name<strong>d</strong> TFsismozon, aimed at characterizing the local seismic response of the urban areas of Tenerife with the aim of mitigating the seismic risk of the island.</p><p>The first site selected for this purpose was the town of San Cristóbal de La Laguna, declared World Heritage Site by UNESCO 1999 and partially built over lacustrine sediments, which can be responsible for seismic wave amplification. For this purpose, during the summer of 2019, INVOLCAN realized a dense seismic survey of the town, performing seismic noise measurements on 453 sites located in the downtown and its surroundings, for a total surface of about 11 km<sup>2</sup>. The measurements were realized by deploying mini-arrays, composed of 3-4 elements, for a duration of 2-3 hours. These measurements were realized with the goals  of obtaining H/V ratios and also to get the surface waves dispersion curves through the cross-correlation of the seismic noise. The amplification frequencies are obtained through the H/V ratio, while the joint inversion of both H/V and dispersion curve data allows for obtaining Vs profiles for each point.</p><p>This survey therefore represents the first extensive mapping of seismic amplification effects in the Canary Islands. It also allows for improving the geological models of the town, in particular providing a high-resolution map of the lacustrine deposits on which part of the town lies. The preliminary results of the survey evidenced a clear relation between the sediment thickness and the frequency of the dominant peaks in H/V ratio. Moreover, the preliminary data analysis, on the basis of the H/V ratios, showed that the south-eastern area of the survey may be similar to the lacustrine basin, although previous geological maps indicated the presence of basalts.</p>


Sign in / Sign up

Export Citation Format

Share Document