Analysis of Factors Influencing Soil Classification Using Normalized Piezocone Tip Resistance and Pore Pressure Parameters

Author(s):  
James A. Schneider ◽  
Mark F. Randolph ◽  
Paul W. Mayne ◽  
Nicholas R. Ramsey
2019 ◽  
Vol 56 (8) ◽  
pp. 1184-1205 ◽  
Author(s):  
Hui Wang ◽  
Xiangrong Wang ◽  
J. Florian Wellmann ◽  
Robert Y. Liang

This paper presents a novel perspective to understanding the spatial and statistical patterns of a cone penetration dataset and identifying soil stratification using these patterns. Both local consistency in physical space (i.e., along depth) and statistical similarity in feature space (i.e., logQt–logFrspace, where Qtis the normalized tip resistance and Fris the normalized friction ratio, or the Robertson chart) between data points are considered simultaneously. The proposed approach, in essence, consists of two parts: (i) a pattern detection approach using the Bayesian inferential framework and (ii) a pattern interpretation protocol using the Robertson chart. The first part is the mathematical core of the proposed approach, which infers both spatial pattern in physical space and statistical pattern in feature space from the input dataset; the second part converts the abstract patterns into intuitive spatial configurations of multiple soil layers having different soil behavior types. The advantages of the proposed approach include probabilistic soil classification and identification of soil stratification in an automatic and fully unsupervised manner. The proposed approach has been implemented in MATLAB R2015b and Python 3.6, and tested using various datasets including both synthetic and real-world cone penetration test soundings. The results show that the proposed approach can accurately and automatically detect soil layers with quantified uncertainty and reasonable computational cost.


Author(s):  
Murad Y. Abu-Farsakh ◽  
Zhongjie Zhang ◽  
Mehmet Tumay ◽  
Mark Morvant

Computerized MS-Windows Visual Basic software of a cone penetration test (CPT) for soil classification was developed as part of an extensive effort to facilitate the implementation of CPT technology in many geotechnical engineering applications. Five CPT soil engineering classification systems were implemented as a handy, user-friendly, software tool for geotechnical engineers. In the probabilistic region estimation and fuzzy classification methods, a conformal transformation is first applied to determine the profile of soil classification index (U) with depth from cone tip resistance (qc) and friction ratio (Rf). A statistical correlation was established in the probabilistic region estimation method between the U index and the compositional soil type given by the Unified Soil Classification System. Conversely, the CPT fuzzy classification emphasizes the certainty of soil behavior. The Schmertmann and Douglas and Olsen methods provide soil classification charts based on cone tip resistance and friction ratio. However, Robertson et al. proposed a three-dimensional classification system that is presented in two charts: one chart uses corrected tip resistance (qt) and friction ratio (Rf); the other chart uses qt and pore pressure parameter (Bq) as input data. Five sites in Louisiana were selected for this study. For each site, CPT tests and the corresponding soil boring results were correlated. The soil classification results obtained using the five different CPT soil classification methods were compared.


2020 ◽  
Vol 57 (9) ◽  
pp. 1369-1387 ◽  
Author(s):  
A. Khosravi ◽  
A. Martinez ◽  
J.T. DeJong

This paper presents a study on the simulation of cone penetration tests (CPTs) using the discrete element model (DEM) method. This study’s main objective is to investigate the effect of different modeling parameters and simulation configurations on the ability of three-dimensional DEM simulations to replicate realistic CPT tip resistance (qc) and friction sleeve shear stress (fs) measurements. The CPT tests were simulated in virtual calibration chambers (VCCs) containing particles calibrated to model the behavior of sand. The parameters investigated included the granular assembly properties, interparticle contact parameters, particle–probe interface characteristics, and simulation configuration. Results indicate that the interparticle contact parameters, boundary conditions, and void ratio have an important role in the tip resistance and friction sleeve measurements obtained from the simulations. Particle-level interactions such as particle displacements and rotations and interparticle contact forces were analyzed throughout to provide insight into the differences in measured CPT response. Interpretation of the qc and fs measurements using soil behavior type (SBT) charts for soil classification indicates that the simulated CPT response is representative of the response of coarse-grained soils measured during field soundings. Analysis of results within the SBT framework can provide insight into the influence of soil particle properties on CPT-based soil classification.


2013 ◽  
Vol 10 (4) ◽  
pp. 494-499 ◽  
Author(s):  
Ruihe Wang ◽  
Zizhen Wang ◽  
Xun Shan ◽  
Hao Qiu ◽  
Tianyang Li

Author(s):  
Joshua Potvin ◽  
David Woeller ◽  
James Sharp ◽  
W. Andy Take

A multi-year cone penetration testing program was initiated at a landslide subject to episodic retrogression in Mud Creek, Ottawa, to assess whether a hand-operated mobile CPT could yield new insights into the current degree of remoulding under progressive failure in metastable areas of a landslide where conventional tracked rigs are unable to gain access. The mobile CPT rig permitted tests to be performed through the entire thickness of the Champlain Sea deposit at a penetration rate of 0.5 cm/s, with similar results to tests performed at the standard 2 cm/s. Measurements of pore pressure varied considerably with cone size, with the magnitude of pore pressure response decreasing with cone size. The elevation of the slip surface was identified in the tip resistance as the point of transition between the remolded soil above the slip surface and the intact soil below the slip surface, whereas a further 0.5 m of penetration was required to elevate pore pressures to values indicative of the intact soil behaviour. In-situ measurements of shear strength of corresponding layers between the intact and remolded profiles to be compared indicating that the soil above the slip surface had remolded to 50% of its fully remolded strength.


1987 ◽  
Vol 24 (4) ◽  
pp. 645-652 ◽  
Author(s):  
J.-M. Konrad

A comprehensive in situ testing program using a 50-kN electric piezo-friction-cone penetrometer was carried out at three different sites in soft marine clays. In these soils, the measured penetration resistance and friction are less than 4% of the full design capacity of the load cells. Although the strain gauges are temperature compensated, the importance of temperature effects in these soil conditions is demonstrated. The paper outlines a testing procedure to minimize the errors associated with zero shift in cone testing and to obtain meaningful data in weak soils with 50-kN penetrometers.Pore-water pressure measurements along the shaft are essential to evaluate the in situ test results in soft soils. Pore pressure distribution along the shaft is dependent on soil type, and measurements should be made at both ends of the friction sleeve for complete soil characterization.Friction along the shaft is not uniform and is negligible over an initial length of about 2 cone diameters in soft clays. Key words: soft clays, pore pressure, friction, tip resistance, in situ testing.


Author(s):  
Mohsen Amirmojahedi ◽  
Murad Abu-Farsakh

Cone and piezocone penetration tests (CPT, PCPT) are widely acknowledged to be useful and powerful in-situ tests for soil classification and characterization, and for evaluating different soil properties, such as strength and consolidation parameters. Due to similarity, between the cone and the pile penetration, CPT data have been used effectively for estimating ultimate pile capacity. Researchers have developed various direct CPT methods to estimate the ultimate capacity of piles ( Qp) from CPT/PCPT data (tip resistance and sleeve friction) with depth. In this study, the measured ultimate pile capacities ( Qp) obtained from static load tests on 80 square precast prestressed concrete piles in Louisiana were used to evaluate 18 direct pile-CPT methods for estimating ultimate pile capacity. Two approaches were used. In the first approach, three criteria (best fit line, arithmetic mean and standard deviation, and cumulative probability of Qp/Qm) were adopted, and the sum of ranking of all criteria was used to determine the final ranking of each method. A second approach, multidimensional unfolding, was used to display the ranking data in a two-dimensional space. This approach helps to reveal the typical ranking of the pile-CPT methods, the extent of agreement between the piles, the existence of outliers among the piles, and the similarity between the CPT methods. Based on the results of this study, Bustamante and Gianeselli (LCPC), probabilistic, UF, Philipponnat, CPT2000, UWA, De Ruiter and Beringen, and Schmertmann were found to be the best CPT methods (in order) for estimating the ultimate pile capacity of driven PPC piles.


2021 ◽  
Vol 6 (3) ◽  
pp. 32
Author(s):  
Binyam M. Bekele ◽  
Chung R. Song ◽  
Gyunam Jin ◽  
Mark Lindemann

Overconsolidated (OC) soils may develop a low or negative pore pressure during PCPT. Thus, it is challenging to develop an “on-the-fly” estimation of hydraulic conductivity from PCPT results. This study presents a method to estimate the hydraulic conductivity of OC soils from PCPT results based on a previously developed method for normally consolidated (NC) soils. To apply the existing method, PCPT pore pressure in OC soils is adjusted by using a correction factor. An equation for the correction factor is derived based on the concepts of critical state soil mechanics, cavity expansion, and consolidation theories. Then, it was reformulated so that traditional cone indices could be used as input parameters. It is shown that the correction factor is mainly influenced by the cone tip resistance, pore pressure, and the rigidity index. The comparison of predicted, which is based on corrected pore pressure and measured hydraulic conductivity showed a good match for four well documented data sets. With the findings of the study, it is expected that an “on-the-fly” estimation of hydraulic conductivity of overconsolidated soils is possible.


Sign in / Sign up

Export Citation Format

Share Document