soil behaviour
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 61)

H-INDEX

31
(FIVE YEARS 4)

2022 ◽  
Vol 961 (1) ◽  
pp. 012033
Author(s):  
Ahmed S. Ali ◽  
Nahla M. Salim ◽  
Husam H. Baqir

Abstract Piles with helices are a kind of foundation that is capable of withstanding compression, tension, and lateral loads. However, for almost 25 years, this kind of Pile was widely used across the world. Its behaviour is unpredictable and terrifying, especially in Iraq. The present study analysed this kind of Pile using the finite element method. It was recommended that the helical pile geometry be modeled by numerical model technique and the computer program Plaxis 3D. The plaxis 3D software is a well-known geotechnical engineering tool that numerically analyses soil and simulates experimental work in terms of curve matching and outcomes. Furthermore, an analysis of variables was conducted. The primary variable research investigates the influence of the number of helices and the tapered helix distance under static and cyclic load. The final finding is that the more helices in a pile, the smaller the displacement (or amplitude) in comparison to one helix under the effect of uplift static and cyclic load. As a result that the effect of helix number on soil behaviour is more than the effect of changing the distances between helix.


2021 ◽  
Vol 44 (4) ◽  
pp. 1-14
Author(s):  
Catarina Ramos ◽  
António Fonseca ◽  
Cristiana Ferreira

Over the years, methods to assess cyclic liquefaction potential based on piezocone penetration tests (CPTu) have been developed. This paper presents a comparative study between three CPTu-based methodologies, mainly in terms of the normalization procedures of overburden stresses, equivalent clean sand resistance, and magnitude scaling factor (MSF). Four CPTu profiles from a pilot site in southwest Portugal are thoroughly analysed with different methods, in terms of factor of safety against liquefaction, the Liquefaction Potential Index (LPI), and the Liquefaction Severity Number (LSN). The site presents very heterogeneous soil profiles, composed of alluvial deposits. Due to the presence of significant sand-silt–clay interbedded layers, the influence of transition zones and the use of different soil behaviour type index (Ic) cut-off values were also considered. From these analyses, a set of recommendations is presented for CPTu-based liquefaction assessment. Based on the extensive database of CPTu results in the pilot site area, a new classification relating LPI and LSN is proposed to assess liquefaction severity and damage.


Author(s):  
Joshua Potvin ◽  
David Woeller ◽  
James Sharp ◽  
W. Andy Take

A multi-year cone penetration testing program was initiated at a landslide subject to episodic retrogression in Mud Creek, Ottawa, to assess whether a hand-operated mobile CPT could yield new insights into the current degree of remoulding under progressive failure in metastable areas of a landslide where conventional tracked rigs are unable to gain access. The mobile CPT rig permitted tests to be performed through the entire thickness of the Champlain Sea deposit at a penetration rate of 0.5 cm/s, with similar results to tests performed at the standard 2 cm/s. Measurements of pore pressure varied considerably with cone size, with the magnitude of pore pressure response decreasing with cone size. The elevation of the slip surface was identified in the tip resistance as the point of transition between the remolded soil above the slip surface and the intact soil below the slip surface, whereas a further 0.5 m of penetration was required to elevate pore pressures to values indicative of the intact soil behaviour. In-situ measurements of shear strength of corresponding layers between the intact and remolded profiles to be compared indicating that the soil above the slip surface had remolded to 50% of its fully remolded strength.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022067
Author(s):  
Magdalena Kowalska

Abstract Hardening Soil model with the small strain extension (HSS) is lately one of the most popular constitutive models to describe soil behaviour. It is versatile – includes the phenomena of shear strength, stress history, dilatancy, volumetric and shear hardening, hyperbolic stress-strain relationship in axial compression, stiffness dependency on stress and its degradation with strain, as well as the regain of the high stiffness after sharp loading reversals. Even though the model is advanced and complex, accordingly to its authors, it is relatively easy to calibrate based on results of standard tests and empirical formulas. In this paper an attempt was undertaken to estimate the parameters of untypical anthropogenic soils – mixtures of sand and scrap tyre rubber in order to build a database for future numerical analyses. A literature review was conducted and, eventually, the material parameters were determined based on results of a series of laboratory tests (cyclic and monotonic triaxial with bender elements, direct shear) published by researchers of Wollongong University of Australia.


2021 ◽  
Vol 40 (3) ◽  
pp. 371-378
Author(s):  
J.O. Okovido ◽  
E.O. Obroku

Soil behaviour may be hinged on the relative composition and nature of arrangement of the various component fractions embedded in the soil. Whether the component proportions of the fines (silt/clay) are interwoven within the voids of coarse (sand) grains, or that the coarse grains are dispersed within the fines mass would determine sandy or clayey soils characteristics. Density and voids ratio assessments of tropical residual soils were conducted in this study on compacted reconstituted binary blends of fines and coarse soils which were also subjected to cycles of sustained compression loads. The soil was separated into fines and coarse fractions by sieving through a 75μm sieve. Reconstituted soil samples were prepared from these two fractions in varying percentages ranging from zero fines content (0:100) to 100 percent fines fraction (100:0) in 10 percent increment. The results indicate that the moisture contents and changes in density due to moisture movements were insignificant for fines less than 40 percent. Compacted density and voids ratios were optimally maximum and minimum with values of about 2000kg/m3(dry density) and 0.2 respectively at fines contents of 20 percent. An optimal degree of saturation was also obtained at 20 percent fines. Optimum moisture contents were also obtained at about 30 percent with the corresponding optimum dry densities ranging from 2100kg/m3 to 2200kg/m3 from compression tests. The thresholds fines content therefore would depend on the stress state of the soil and may be about 20 or 30 percent for subgrade assessments or geotechnical considerations respectively and beyond the threshold fines content the fines fraction makes up the stress-carrying matrix for the soil mass thus controlling the soil behaviour.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6760
Author(s):  
Md Rajibul Karim ◽  
Md Mizanur Rahman ◽  
Khoi Nguyen ◽  
Donald Cameron ◽  
Asif Iqbal ◽  
...  

Expansive soils go through significant volume changes due to seasonal moisture variations resulting in ground movements. The ground movement related problems are likely to worsen in the future due to climate change. It is important to understand and incorporate likely future changes in design to ensure the resilience of structures built on such soils. However, there has been a limited amount of work quantifying the effect of climate change on expansive soils movement and related behaviour of structures. The Thornthwaite Moisture Index (TMI) is one of the commonly used climate classifiers in quantifying the effect of atmospheric boundary on soil behaviour. Using the long-term weather data and predicted future changes under different emission scenarios, a series of TMI maps are developed for South Australia. Potential changes in ground movement are then estimated for a selected area using a simplified methodology where the effect of future climate is captured through changes in TMI. Results indicate that South Australia is likely to face a significant reduction in TMI under all emission scenarios considered in this study. The changes in TMI will lead to a considerable increase in potential ground movement which will influence the behaviour of structures built on them and in some areas may lead to premature failure if not considered in the design.


2021 ◽  
Vol 80 (20) ◽  
Author(s):  
Sohaib Kareem Al-Mamoori ◽  
Laheab A. Al-Maliki ◽  
Ahmed Hashem Al-Sulttani ◽  
Khaled El-Tawil ◽  
Nadhir Al-Ansari

AbstractThe presence of an economical solution to predict soil behaviour is essential for new construction areas. This paper aims to investigate the ultimate interpolation method for predicting the soil bearing capacity of An-Najaf city-Iraq based on field investigation information. Firstly, the engineering bearing capacity was calculated based on the in-site N-SPT values using dynamic loading for 464 boreholes with depths of 0–2 m, using the Meyerhof formula. The data then were classified and imported to the GIS program to apply the interpolation methods. Four deterministic and two geostatistical interpolation methods were applied to produce six bearing capacity maps. The statistical analyses were performed using two methods: the common cross-validation method by the coefficient of determination (R2) and root mean square error (RMSE), where the results showed that ordinary kriging (OK) is the ultimate method with the least RMSE and highest R2. These results were confusing so, the backward elimination regression (BER) procedure was applied to gain the definite result. The results of BER show that among all the deterministic methods, the IDW is the optimal and most significant interpolation method. The result of geostatistical methods shows that EBK is the best method in our case than the OK method. BER also applied to all six methods and shows that IDW is the ultimate significant method. The results indicate no general ultimate interpolation method for all cases and datasets type; therefore, the statistical analyses must be performed for each case and dataset.


Author(s):  
Wasiq Maqbool Peer

Abstract: Soil at a construction site may not always be totally suitable for supporting structures in its natural state. In such a case, the soil needs to be improved to increase its bearing capacity and decrease the expected settlement. This paper gives an overview of techniques that are commonly used to improve the performance of saturated clayey soil in situ, its functions, methods of installation. Then, this study concluded that there is an urgent need to study the technique of removal and replacement for improving soil behaviour taking into consideration geotechnical requirements (i.e.bearing capacity and settlement) and cost to achieve the optimum thickness of replacement layers and the most suitable material corresponding to minimum total cost of foundation works. Keywords: Bearing capacity failure, Preloading, drains, stone column, Dynamic compaction, Grouting methods of soil improvement


Author(s):  
Agostino Walter Bruno ◽  
Domenico Gallipoli ◽  
Joao Mendes

This paper presents the results from a campaign of unsaturated and saturated isotropic tests performed on two compacted silts of different coarseness, namely a clayey silt and a sandy silt, inside triaxial cells. Some tests involved an increase/decrease of mean net stress at constant suction or an increase/decrease of suction at constant mean net stress. Other tests involved an increase of mean net stress at constant water content with measurement of suction. During all tests, the void ratio and degree of saturation were measured to investigate the mechanical and retention behaviour of the soil. The experimental results were then simulated by the bounding surface hydromechanical model of Bruno and Gallipoli (2019), which was originally formulated to describe the behaviour of clays and clayey silts. Model parameters were calibrated against unsaturated tests including isotropic loading stages at constant water content with measurement of varying suction. Loading at constant water content is relatively fast and allows the simultaneous exploration of large ranges of mean net stress and suction, thus reducing the need of multiple experiments at distinct suction levels. Predicted data match well the observed behaviour of both soils, including the occurrence of progressive yielding and hysteresis, which extends the validation of this hydromechanical model to coarser soils. Specific features of the unsaturated soil behaviour, such as wetting-induced collapse, are also well reproduced.


Geotechnics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 95-127
Author(s):  
António Viana da Fonseca ◽  
Diana Cordeiro ◽  
Fausto Molina-Gómez

The critical state theory is a robust conceptual framework for the characterisation of soil behaviour. In the laboratory, triaxial tests are used to assess the critical state locus. In the last decades, the equipment and testing procedures for soil characterisation, within the critical state framework, have advanced to obtain accurate and reliable results. This review paper summarises and describes a series of recommended laboratory procedures to assess the critical state locus in cohesionless soils. For this purpose, results obtained in the laboratory from different cohesionless soils and triaxial equipment configurations are compiled, analysed and discussed in detail. The procedures presented in this paper reinforce the use of triaxial cells with lubricated end platens and an embedded connection piston into the top-cap, together with the verification of the full saturation condition and the measurement end-of-test water content—preferable using the soil freezing technique. The experimental evidence and comparison between equipment configurations provide relevant insights about the laboratory procedures for obtaining a reliable characterisation of the critical state locus of cohesionless geomaterials. All the procedures recommended herein can be easily implemented in academic and commercial geotechnical laboratories.


Sign in / Sign up

Export Citation Format

Share Document