Innovative and Eco-friendly Solutions for the Seismic Retrofitting of Natural Stone Masonry Walls with Textile Reinforced Mortar: In- and Out-of-Plane Behavior

Author(s):  
P. D. Gkournelos ◽  
L. D. Azdejković ◽  
T. C. Triantafillou
2019 ◽  
Vol 17 (11) ◽  
pp. 6265-6300 ◽  
Author(s):  
Stefano De Santis ◽  
Gerardo De Canio ◽  
Gianmarco de Felice ◽  
Pietro Meriggi ◽  
Ivan Roselli

2015 ◽  
Vol 13 (9) ◽  
pp. 2667-2692 ◽  
Author(s):  
Tiago Miguel Ferreira ◽  
Alexandre A. Costa ◽  
António Arêde ◽  
Ana Gomes ◽  
Aníbal Costa

2017 ◽  
Vol 15 (10) ◽  
pp. 4299-4317 ◽  
Author(s):  
Marta Giaretton ◽  
Maria Rosa Valluzzi ◽  
Nicola Mazzon ◽  
Claudio Modena

Buildings ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 72
Author(s):  
Simona Coccia ◽  
Fabio Di Carlo ◽  
Stefania Imperatore

The out-of-plane behaviour of the walls as a consequence of an earthquake is the main vulnerability of existing masonry structures. In the case of rigid in compression not tensile resistant material, incremental dynamic analyses may be employed to evaluate the effective strength of a rocking element. When the seismic capacity of the wall is inadequate, retrofit interventions are required to assure an acceptable safety level. Conventional seismic retrofitting techniques on masonry walls influence the seismic performance of the element, which typically is modified in an out-of-plane bending behaviour. In this paper, analytical investigations are presented to investigate the possibility of a seismic retrofitting intervention able to increase the seismic strength of the wall without modifying its seismic behaviour. The analysed retrofitting technique consists in the application of composite vertical bars either in the middle section of the wall or at its external surfaces. The seismic behaviour of the retrofitted masonry wall is analytically evaluated by means of a parametric incremental dynamic analysis, carried out with an ad hoc in-house software. The effectiveness of the intervention is analysed in terms of level of seismic improvement, defined as the ratio between the seismic capacity of the reinforced and unreinforced walls.


2010 ◽  
Vol 133-134 ◽  
pp. 849-854
Author(s):  
Leire Garmendia ◽  
José Tomás San-José ◽  
David García ◽  
Pello Larrinaga ◽  
Jesús Díez

This paper aims to present the design, strengthening and testing of full scale masonry walls and arches. The preservation of our cultural heritage is a really important topic. Majority of masonry structures are deteriorated because of ageing effects, load increments, movements at their foundations, etc. Because of this, retrofitting is needed. In order to afford this problem, a compatible and minimally invasive strengthening technique based on Textile Reinforced Mortar (TRM) is developed. The experimental campaign consists of the characterisation of the constitutive materials of the stone structures and the strengthening textile and mortar (TRM has been characterised by pure tensile tests). Furthermore, the influence of the different arrangements of the masonry and mortar type has been analysed by testing 24 masonry prisms. Finally, 12 full-scale stone arches have been erected, strengthened and tested. The purpose is to compare the mechanical behaviour up to failure of both unstrengthened and strengthened structures. During the tests the effectiveness of the technique has been proved being the ultimate load up to 21 times higher.


2018 ◽  
Vol 2 (3) ◽  
pp. 6-16 ◽  
Author(s):  
Elena Ferretti

Abstract One of the major concerns in the seismic retrofitting of masonry walls is that of increasing the ultimate load for out-of-plane forces. In multi-story buildings, these forces may originate from the hammering actions of floors, when the earthquake direction is orthogonal to the wall. A possibility for counteracting the out-of-plane displacements is retaining the wall by building some buttresses, that is, some beams lean against the wall and disposed vertically. Another possibility is to make the buttress in the thickness of the wall. In this second case, we must cut the wall for its entire height, realize the buttress, and restore the masonry wall around it. In both cases, the interventions are highly invasive. The first intervention also leads to increments of mass that enhance the attraction of seismic forces. The aim of this paper is to find a less invasive and lighter alternative for realizing buttresses. We proposed to use FRP strips and steel ribbons in a combined fashion, so as to realize an ideal vertical I-beam embedded into the wall, without requiring to cut the masonry. We also provided some experimental results for verifying the effectiveness of the model.


2018 ◽  
Vol 2 (3) ◽  
pp. 7 ◽  
Author(s):  
Elena Ferretti

One of the major concerns in the seismic retrofitting of masonry walls is that of increasing the ultimate load for out-of-plane forces. In multi-story buildings, these forces may originate from the hammering actions of floors, when the earthquake direction is orthogonal to the wall. A possibility for counteracting the out-of-plane displacements is retaining the wall by building some buttresses, that is, some beams lean against the wall and disposed vertically. Another possibility is to make the buttress in the thickness of the wall. In this second case, we must cut the wall for its entire height, realize the buttress, and restore the masonry wall around it. In both cases, the interventions are highly invasive. The first intervention also leads to increments of mass that enhance the attraction of seismic forces. The aim of this paper is to find a less invasive and lighter alternative for realizing buttresses. We proposed to use FRP strips and steel ribbons in a combined fashion, so as to realize an ideal vertical I-beam embedded into the wall, without requiring to cut the masonry. We also provided some experimental results for verifying the effectiveness of the model.


Sign in / Sign up

Export Citation Format

Share Document