strengthening technique
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 74)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Xiaoshuang Luo ◽  
Shengpeng Zhan ◽  
Dan Jia ◽  
Jiesong Tu ◽  
Yinhua Li ◽  
...  

Abstract Ultrasonic surface rolling (USR) process is a novel surface strengthening technique based on the tool head's high-frequency impact on the workpiece. USR can cause severe plastic deformation on the superficial surface of metal material, and greatly improving the mechanical properties of the material. This paper elucidates the effects of USR passes on the surface roughness, sample height, microstructure, microhardness, residual stress, and tribological properties of 4Cr13 stainless steel. The results revealed that multiple USR treatments refined the near-surface layer grain of the sample. Compared with untreated sample, USR treatments significantly improved the surface roughness and microhardness of the samples. Obvious compressive residual stress and plastic deformed with a maximum value of about -723 MPa and a depth of about 229 μm were also introduced into the sample surface. Under a dry friction environment, the samples that underwent the USR treatments exhibited significantly enhanced wear resistance, and six rolling passes were found to be the most suitable treatment.


Structures ◽  
2022 ◽  
Vol 35 ◽  
pp. 68-81
Author(s):  
Zhengnan Liu ◽  
Xingchong Chen ◽  
Mingbo Ding ◽  
Xiyin Zhang ◽  
Jinhua Lu

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 257
Author(s):  
Guoying Liu ◽  
Qiuyi Li ◽  
Jialin Song ◽  
Liang Wang ◽  
Haibao Liu ◽  
...  

Due to the large amount of old hardened cement mortar attached to the surface of aggregate and the internal micro-cracks formed by the crushing process, the water absorption, apparent density, and crushing index of recycled coarse aggregate are still far behind those of natural coarse aggregate. Based on the performance requirements of different qualities of recycled coarse aggregate, the performance differences of recycled coarse aggregate before and after physical strengthening were observed. The results showed that the physical strengthening technique can remove old hardened mortar and micro powder attached to the surface of recycled coarse aggregate by mechanical action, which can effectively improve the quality of recycled coarse aggregate. The optimum calcination temperature of the recycled coarse aggregate was 400 °C and the grinding time was 20 min. The contents of the attached mortar in recycled coarse aggregates of Class I, II, and III were 7.9%, 22.8%, and 39.7%, respectively. The quality of recycled coarse aggregate was closely related to the amount of mortar attached to the surface. The higher the mortar content, the higher the water absorption, lower apparent density, and higher crushing index of the recycled coarse aggregate.


2021 ◽  
pp. 1851-1861
Author(s):  
Alberto Balsamo ◽  
Marco Di Ludovico ◽  
Maddaloni Gennaro ◽  
Andrea Prota ◽  
Luca Albertario

Author(s):  
Mahgoub Elhaj Mahgoub Kambal ◽  
Mohammed Awad ◽  
Malik Mohammed Ali

Abstract The prestressing technique is easy to apply and is generally used to strengthen steel bridges and controls their gross deflection. ANSYS has been used to establish a numerical model for the mechanical behavior of a steel box girder and prestressed by external tendons. In this paper, steel plate girders with and without strengthening technique was tested to assess the effectiveness of this technology. The results showed that prestressing improves the mechanical behavior of a girder and that its effect is proportional to magnitude of the applied external load. The results of the numerical model showed good agreement with the experimental data. A full-course simulation was conducted with ANSYS for a parametric study to analyze the influence of prestressing force magnitude, span-height ratio, and tendon configurations in increasing the effectiveness of prestressed technique.


2021 ◽  
Vol 27 (8) ◽  
pp. 637-650
Author(s):  
M. Obaydullah ◽  
Mohd Zamin Jumaat ◽  
U. Johnson Alengaram ◽  
Md. Humayun Kabir ◽  
Muhammad Harunur Rashid

In this study, a combined strengthening technique is used to improve the flexural performance of prestressed concrete beams using CFRP sheets as EBR and prestressed steel strands as NSM. Seven prestressed beams were tested under four-point loading with one control specimen, one EBR CFRP sheet strengthened specimen, one NSM steel strand without prestress strengthened specimen and four specimens strengthened with a combination of EBR CFRP sheet and NSM steel strands prestressed from 0% to 70% of their tensile strength. The flexural responses and failure modes of the specimens were investigated and the variations due to the level of prestressing force in the PNSM steel strands were also assessed. A finite element model (FEM) was developed using ABAQUS to verify the flexural responses of the strengthened specimens. The test results revealed that the combined strengthening technique remarkably enhanced the flexural performance of the specimens. The serviceability, first crack, yield, and ultimate load capacities improved up to 44%, 49%, 55% and 70%, respectively when compared with the control specimen. The combined technique also ensured the flexural failure of the specimens with significant enhancement in stiffness and energy absorption. The results of the FEM model exhibited excellent agreement with the experimental results.


Author(s):  
Fathima Azad

Abstract: Maintenance, repair and strengthening of existing concrete structures, either reinforced or prestressed,are important activities of civil engineers. Nowadays different techniques are available for the strengthening. Various techniques were adopted for strengthening RC structures, namely, steel plates, external post tensioning, externally bonded Fibre-Reinforced Polymer (FRP), and near- surface-mounted FRP systems to increase shear and flexural capacity. During the last few decades, strengthening of concrete structural elements by fibre-reinforced polymer has become a widely used technique. But it has several disadvantages due to the epoxy resin like debonding of FRP from the concrete structure, unstable nature of the epoxy at higher temperatures etc. To overcome this, an upgraded system was introduced as an alternative for FRP known as Fibre Reinforced Cementitious Matrices (FRCM). The objective of this paper is to investigate the feasibility of Fibre-Reinforced Cementitious-Matrix materials as an alternative external strengthening technique for RC members. Columns with circular geometry were wrapped with different fibre materials using cementitious matrix. The analysis was done using ANSYS software. Keywords: RC columns, FRCM, Strengthening, fibre, ANSYS


Author(s):  
Tejash K PATEL ◽  
Sanjay R SALLA ◽  
Sandip A VASANWALA ◽  
Chetankumar D MODHERA ◽  
Darshan PATEL ◽  
...  

The strengthening and retrofitting of concrete structures are becoming an essential part of the building and its structures. When the building comes of age, there is a need to increase the structural members' strength, life, and resistivity against unfavorable environmental conditions. In the current scenario, ferrocement composites are used for structural strengthening and rehabilitation. Therefore, an experimental investigation is needed to evaluate the effectiveness of the strengthening on the square and circular reinforced concrete columns by ferrocement and micro concrete materials. The experimental results showed that the ferrocement and micro concrete techniques enhanced the stress-strain behavior and displacement limit of the square and circular RC column. The strengthening circular RC column by micro concrete gives a better performance in stress-strain behavior and displacement limit. In addition, the ferrocement and micro concrete strengthening technique is a promising and economical alternative compared to the other strengthening techniques. Also, test results were compared with ACI and CNR–DT representative load-carrying models to verify each model's reliability and accuracy. Furthermore, the TOPSIS method was adopted to find out the best solution for square and circular columns, and cost analysis was carried out. HIGHLIGHTS RC columns were strengthened using ferro cement and micro concrete RC Columns under compressive concentric load were tested Micro concrete strengthening controls deflection and enhances the load capacity of columns The analytical approach of TOPSIS was used to find the best solution GRAPHICAL ABSTRACT


2021 ◽  
Vol 11 (4) ◽  
pp. 305-315
Author(s):  
Ziaaddin Zamanzadeh ◽  
Farzin Hosseinzadeh ◽  
Mehdi Bashiri

The effectiveness of a strengthening technique devised for the concrete beams subjected to bending is presented in this study, where recycled-steel fiber-reinforced mortar (RSFRM) panels are used as an eco-friendly replacement for ordinary steel fibers. Different mix designs for RSFRM are first investigated experimentally by testing 160 × 400 × 400 mm3 notched beam-like specimens in 3-point bending, while 100 × 100 × 100 mm3 cubes are tested in compression, to optimize the mix design. Finite element (FE) analyses are carried out on strengthened and non-strengthened beams to investigate the effectiveness of the proposed strengthening technique based on RSFRM panels. Starting from the tests on notched beams, an inverse FE analysis is used to optimize the RSFRM’s parameters to be implemented into the numerical model. The results show that applying RSFRM panels not only markedly increases the load-bearing capacity of the beams (up to 3.19 times with 3% of fibers by volume), but also changes their fracture mechanism from brittle to ductile fracture.


Fibers ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 42
Author(s):  
Emmanouil Golias ◽  
Adamantis G. Zapris ◽  
Violetta K. Kytinou ◽  
Mourhat Osman ◽  
Michail Koumtzis ◽  
...  

The effectiveness of externally applied fiber-reinforced polymer (FRP) ropes made of carbon fibers in X-shape formation and in both sides of the joint area of reinforced concrete (RC) beam–column connections is experimentally investigated. Six full-scale exterior RC beam–column joint specimens are tested under reverse cyclic deformation. Three of them have been strengthened using carbon FRP (CFRP) ropes that have been placed diagonally in the joint as additional, near surface-mounted reinforcements against shear. Full hysteretic curves, maximum applied load capacity, damage modes, stiffness and energy dissipation values per each loading step are presented and compared. Test results indicated that joint sub assemblages with X-shaped CFRP ropes exhibited improved hysteretic behavior and ameliorated performance with respect to the reference specimens. The effectiveness and the easy-to-apply character of the presented strengthening technique is also discussed.


Sign in / Sign up

Export Citation Format

Share Document