Experimental study of comparative efficacy of out-of-plane strengthening of masonry walls using FRP and wire/textile reinforced mortar

Author(s):  
P.K.V.R. Padalu ◽  
Y. Singh ◽  
S. Das
2021 ◽  
Vol 48 (1) ◽  
pp. 89-97
Author(s):  
Jorge Varela-Rivera ◽  
Joel Moreno-Herrera ◽  
Luis Fernandez-Baqueiro ◽  
Juan Cacep-Rodriguez ◽  
Cesar Freyre-Pinto

An experimental study on the out-of-plane behavior of confined masonry walls is presented. Four confined walls with aspect ratios greater than one were tested in the laboratory. Walls were subjected to combined axial and out-of-plane uniform loads. The variables studied were the aspect ratio and the axial compressive stress of walls. It was observed that the out-of-plane strength of walls increased as the aspect ratio or the axial compressive stress increased. Failure of walls was associated with crushing of masonry. Analytical out-of-plane strength of walls was determined using the yielding line, failure line, modified yielding line, compressive strut and bidirectional strut methods. It was concluded that the experimental out-of-plane strength of walls was best predicted with the bidirectional strut method.


2019 ◽  
Vol 17 (11) ◽  
pp. 6265-6300 ◽  
Author(s):  
Stefano De Santis ◽  
Gerardo De Canio ◽  
Gianmarco de Felice ◽  
Pietro Meriggi ◽  
Ivan Roselli

2020 ◽  
Vol 4 (4) ◽  
pp. 189
Author(s):  
Kyriakos Karlos ◽  
Aristomenis Tsantilis ◽  
Thanasis Triantafillou

Taking into consideration the seismic vulnerability of older buildings and the increasing need for reducing their carbon footprint and energy consumption, the application of an innovative system is investigated; the system is based on the use of textile-reinforced mortar (TRM) and thermal insulation as a means of combined seismic and energy retrofitting of existing masonry walls. Medium-scale tests were carried out on masonry walls subjected to out-of-plane cyclic loading. The following parameters were investigated experimentally: placement of the TRM in a sandwich form (over and under the insulation) or outside the insulation, one-sided or two-sided TRM jacketing and/or insulation, and the displacement amplitude of the loading cycles. A simple analytical method is developed and found in good agreement with the test results. Additionally, numerical modeling is carried out and also found in good agreement with the test results. From the results obtained in this study, the authors believe that TRM jacketing may be combined effectively with thermal insulation, increasing the overall strength and energy efficiency of the masonry panels in buildings.


2021 ◽  
Vol 243 ◽  
pp. 112683
Author(s):  
Jamiu A. Dauda ◽  
Luis C. Silva ◽  
Paulo B. Lourenço ◽  
Ornella Iuorio

Sign in / Sign up

Export Citation Format

Share Document