Seismic Analysis of Hybrid Steel Moment Frame CLT Shear Walls Structures

2021 ◽  
Vol 35 (5) ◽  
pp. 04021059
Author(s):  
Mehdi Khajehpour ◽  
Yuxin Pan ◽  
Thomas Tannert
2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 173-180
Author(s):  
Giorgia Di Gangi ◽  
Giorgio Monti ◽  
Giuseppe Quaranta ◽  
Marco Vailati ◽  
Cristoforo Demartino

The seismic performance of timber light-frame shear walls is investigated in this paper with a focus on energy dissipation and ductility ensured by sheathing-to-framing connections. An original parametric finite element model has been developed in order to perform sensitivity analyses. The model considers the design variables affecting the racking load-carrying capacity of the wall. These variables include aspect ratio (height-to-width ratio), fastener spacing, number of vertical studs and framing elements cross-section size. A failure criterion has been defined based on the observation of both the global behaviour of the wall and local behaviour of fasteners in order to identify the ultimate displacement of the wall. The equivalent viscous damping has been numerically assessed by estimating the damping factor which is in use in the capacity spectrum method. Finally, an in-depth analysis of the results obtained from the sensitivity analyses led to the development of a simplified analytical procedure which is able to predict the capacity curve of a timber light-frame shear wall.


2021 ◽  
Vol 13 (8) ◽  
pp. 4278
Author(s):  
Svetlana Tam ◽  
Jenna Wong

Sustainability addresses the need to reduce the structure’s impact on the environment but does not reduce the environment’s impact on the structure. To explore this relationship, this study focuses on quantifying the impact of green roofs or vegetated roofs on seismic responses such as story displacements, interstory drifts, and floor level accelerations. Using an archetype three-story steel moment frame, nonlinear time history analyses are conducted in OpenSees for a shallow and deep green roof using a suite of ground motions from various distances from the fault to identify key trends and sensitivities in response.


1998 ◽  
Vol 46 (1-3) ◽  
pp. 454 ◽  
Author(s):  
Jay Allen ◽  
Ralph M Richard ◽  
James Partridge

2021 ◽  
Vol 86 (788) ◽  
pp. 1400-1411
Author(s):  
Shotaro YAGI ◽  
Jun IYAMA ◽  
Yoshihiro FUKUSHIMA ◽  
Shoichi KISHIKI ◽  
Takanori ISHIDA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document