steel moment frame
Recently Published Documents


TOTAL DOCUMENTS

191
(FIVE YEARS 32)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Kourosh Talebi Jouneghani

The purpose of base isolation is to absorb earthquake energy, prolong the life of the structure, and enable the structure to be similar to a rigid body. However, since resonance can occur due to the closeness of the period of structures to the long period and large velocity pulses of the near field earthquakes, the stability of these buildings greatly reduces, and with the large displacement above isolation level, sometimes, tendency of overturning is created in isolators leading to their destruction. The main objective of this study is to significantly reduce the lateral displacement of base isolation subjected to near field earthquakes. In this research, seismic response calculation has been carried out for five steel moment frame structure with the 3, 5, 8, 11, and 14 stories in two states of with and without stiff core structure and energy dissipaters. The analyses has been done under fourteen scaled records of seven near-source and seven far-source earthquakes. It has been shown that the lateral displacement of base isolation system can be reduced by 87% for low-rise buildings, and 77% for high-rise buildings.


2021 ◽  
Vol 86 (788) ◽  
pp. 1400-1411
Author(s):  
Shotaro YAGI ◽  
Jun IYAMA ◽  
Yoshihiro FUKUSHIMA ◽  
Shoichi KISHIKI ◽  
Takanori ISHIDA ◽  
...  

Author(s):  
Samreen Fatimah ◽  
Jenna Wong

AbstractFragility curves are the primary way of assessing seismic risk for a building with numerous studies focused on deriving these fragility curves and how to account for the inherent uncertainty in the seismic assessment. This study focuses on a three-story steel moment frame structure and performs a fragility assessment of the building using a new approach called SPO2FRAG (Static Pushover to Fragility) that is based on pushover analysis. This new approach is further compared and contrasted against traditional nonlinear dynamic analysis approaches like Incremental Dynamic Analysis and Multiple Stripe Analysis. The sensitivity of the resulting fragility curves is studied against multiple parameters including uncertainties in ground motion, the type of analysis method used and the choice of curve fitting technique. All these factors influence the fragility curve behavior and this study assesses the impact of changing these parameters.


2021 ◽  
Author(s):  
Arezoo Asaad Samani ◽  
Seyed Rohollah Hoseini Vaez ◽  
Mohammad Ali Fathali

Abstract The most commonly used analysis method in performance-based design (PBD) is the nonlinear static analysis (NSA). In unsymmetrical 2D frames, unlike its symmetrical state, NSA should be performed in two lateral loading directions, which complicates the process of achieving a feasible optimal design in addition to increasing the volume of calculations. In this study, a two-step approach is proposed for the design of unsymmetrical 2D steel moment-resisting frames (SMRF). In this approach, in two independent steps, the structure is analyzed with lateral loading pattern based on the first mode shape in positive and negative direction, respectively. The implementation of the second step is conditional on the satisfactory completion of the first step. The objective function takes into account the differences between successful and unsuccessful steps. The constraints considered are based on the acceptance criteria for SMRFs according to FEMA-356 at each performance level. The effectiveness of the proposed approach has been investigated by employing four meta-heuristic optimization algorithms to determine the optimum design for case studies of SMRF structures having three and nine stories.


Sign in / Sign up

Export Citation Format

Share Document