Tensegrity Structures with Buckling Members Explain Nonlinear Stiffening and Reversible Softening of Actin Networks

2009 ◽  
Vol 135 (12) ◽  
pp. 1368-1374 ◽  
Author(s):  
Xian Xu ◽  
Yaozhi Luo
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Litschel ◽  
Charlotte F. Kelley ◽  
Danielle Holz ◽  
Maral Adeli Koudehi ◽  
Sven K. Vogel ◽  
...  

AbstractOne of the grand challenges of bottom-up synthetic biology is the development of minimal machineries for cell division. The mechanical transformation of large-scale compartments, such as Giant Unilamellar Vesicles (GUVs), requires the geometry-specific coordination of active elements, several orders of magnitude larger than the molecular scale. Of all cytoskeletal structures, large-scale actomyosin rings appear to be the most promising cellular elements to accomplish this task. Here, we have adopted advanced encapsulation methods to study bundled actin filaments in GUVs and compare our results with theoretical modeling. By changing few key parameters, actin polymerization can be differentiated to resemble various types of networks in living cells. Importantly, we find membrane binding to be crucial for the robust condensation into a single actin ring in spherical vesicles, as predicted by theoretical considerations. Upon force generation by ATP-driven myosin motors, these ring-like actin structures contract and locally constrict the vesicle, forming furrow-like deformations. On the other hand, cortex-like actin networks are shown to induce and stabilize deformations from spherical shapes.


2021 ◽  
Vol 22 (12) ◽  
pp. 6555
Author(s):  
Sashidar Bandaru ◽  
Chandu Ala ◽  
Alex-Xianghua Zhou ◽  
Levent M. Akyürek

Filamin A (FLNA) is a large actin-binding cytoskeletal protein that is important for cell motility by stabilizing actin networks and integrating them with cell membranes. Interestingly, a C-terminal fragment of FLNA can be cleaved off by calpain to stimulate adaptive angiogenesis by transporting multiple transcription factors into the nucleus. Recently, increasing evidence suggests that FLNA participates in the pathogenesis of cardiovascular and respiratory diseases, in which the interaction of FLNA with transcription factors and/or cell signaling molecules dictate the function of vascular cells. Localized FLNA mutations associate with cardiovascular malformations in humans. A lack of FLNA in experimental animal models disrupts cell migration during embryogenesis and causes anomalies, including heart and vessels, similar to human malformations. More recently, it was shown that FLNA mediates the progression of myocardial infarction and atherosclerosis. Thus, these latest findings identify FLNA as an important novel mediator of cardiovascular development and remodeling, and thus a potential target for therapy. In this update, we summarized the literature on filamin biology with regard to cardiovascular cell function.


2021 ◽  
Vol 1015 (1) ◽  
pp. 012025
Author(s):  
K Martyniuk-Sienkiewicz ◽  
A Al Sabouni-Zawadzka

Sign in / Sign up

Export Citation Format

Share Document