One-Dimensional Consolidation Analysis of Unsaturated Soils Subjected to Time-Dependent Loading

2016 ◽  
Vol 16 (2) ◽  
pp. 04015052 ◽  
Author(s):  
Liem Ho ◽  
Behzad Fatahi
2010 ◽  
Vol 168-170 ◽  
pp. 298-302
Author(s):  
Hao Feng Xu ◽  
Kang he Xie

It is a complicated problem for consolidation analysis of unsaturated soils. Nowadays’ theories are very theoretical, and the parameters in them are so many that it is difficult to solve the equations, i.e., they are not excellently fit for application in engineering. So it is significant to get a simplified theory for consolidation analysis of unsaturated soils. In this paper, according to the phenomena observed in consolidation’s experiments for unsaturated soils, it is assumed that pore-air pressure undergoes an instantaneous dissipation and the consolidation of unsaturated soils can be described as the process of dissipation of excess pore-water pressure. Then a simplified consolidation model is put forward. And based on the principle of the whole soil mass conversation, the continuity equation is founded. Subsequently one- dimensional consolidation equation is derived, which is similar to Terzaghi’s equation for consolidation of saturated soils. Finally, the numerical results from the derived equation are compared with the experimental results from laboratory tests reported in the literature, and the agreement is good. It can be concluded that the hypothesis is rational and the simplified computation is practical in engineering.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Pyol Kim ◽  
Myongchol Ri ◽  
Yonggun Kim ◽  
Gunhyang Ri ◽  
Hakbom Myong

This paper presents analytical solutions to Fredlund and Hasan’s one-dimensional consolidation equations for unsaturated soils subjected to various cyclic loadings. Two new variables are introduced so that the governing equations for excess pore air and water pressures can be transformed to a set of conventional diffusion equations. Based on the general solutions for two introduced variables, the analytical solutions are derived for one-dimensional consolidation of unsaturated soils under trapezoidal, rectangular, triangular, and haversine cyclic loadings. It shows through the degeneration into the existing solutions for unsaturated and saturated soils that the proposed solutions are more general ones for one-dimensional consolidation of soils from unsaturated to saturated states. A comprehensive parametric study is conducted to investigate the effects of different parameters on one-dimensional consolidation of unsaturated soils under various cyclic loadings. The proposed solutions can be effectively utilized in the analysis of consolidation of unsaturated soils subjected to various cyclic loadings.


1985 ◽  
Vol 40 (10) ◽  
pp. 959-967
Author(s):  
A. Salat

The equivalence of magnetic field line equations to a one-dimensional time-dependent Hamiltonian system is used to construct magnetic fields with arbitrary toroidal magnetic surfaces I = const. For this purpose Hamiltonians H which together with their invariants satisfy periodicity constraints have to be known. The choice of H fixes the rotational transform η(I). Arbitrary axisymmetric fields, and nonaxisymmetric fields with constant η(I) are considered in detail.Configurations with coinciding magnetic and current density surfaces are obtained. The approach used is not well suited, however, to satisfying the additional MHD equilibrium condition of constant pressure on magnetic surfaces.


1993 ◽  
Vol 50 (1) ◽  
pp. 51-70 ◽  
Author(s):  
D. Zoler ◽  
S. Cuperman ◽  
J. Ashkenazy ◽  
M. Caner ◽  
Z. Kaplan

A time-dependent quasi-one-dimensional model is developed for studying high- pressure discharges in ablative capillaries used, for example, as plasma sources in electrothermal launchers. The main features of the model are (i) consideration of ablation effects in each of the continuity, momentum and energy equations; (ii) use of a non-ideal equation of state; and (iii) consideration of space- and time-dependent ionization.


Sign in / Sign up

Export Citation Format

Share Document