plasma sources
Recently Published Documents


TOTAL DOCUMENTS

842
(FIVE YEARS 100)

H-INDEX

45
(FIVE YEARS 4)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 104
Author(s):  
Panagiotis Dimitrakellis ◽  
François Faubert ◽  
Maxime Wartel ◽  
Evangelos Gogolides ◽  
Stéphane Pellerin

We studied the epoxy polymer surface modification using air plasma treatment in a Gliding Arc (GA) plasma reactor and a pulsed Dielectric Barrier Discharge (DBD). We employed optical emission spectroscopy (OES) measurements to approximate the vibrational and rotational temperatures for both plasma sources, as well as surface temperature measurements with fiber optics and IR thermography to corelate with the corresponding hydrophilization of the epoxy material. Water contact angle measurements revealed a rapid hydrophilization for both plasma sources, with a slightly more pronounced effect for the air DBD treatment. Ageing studies revealed stable hydrophilicity, with water contact angle saturating at values lower than 50°, corresponding to a >50% decrease compared to the untreated epoxy polymer. ATR-FTIR spectroscopy studies showed an additional absorption band assigned to carbonyl group, with its peak intensity being higher for the DBD treated surfaces. The spectra were also correlated with the surface functionalization via the relative peak area ratio of carbonyl to oxirane and benzene related bands. According to SEM imaging, GA plasma treatment led to no apparent morphological change, contrary to DBD treatment, which resulted in nano-roughness formation. The enhanced surface oxidation as well as the nano-roughness formation on epoxy surface with the air DBD treatment were found to be responsible for the stable hydrophilization.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 238
Author(s):  
Josef Khun ◽  
Anna Machková ◽  
Petra Kašparová ◽  
Myron Klenivskyi ◽  
Eva Vaňková ◽  
...  

A non-thermal plasma (NTP) is a promising tool against the development of bacterial, viral, and fungal diseases. The recently revealed development of microbial resistance to traditional drugs has increased interest in the use of NTPs. We have studied and compared the physical and microbicidal properties of two types of NTP sources based on a cometary discharge in the point-to-point electrode configuration and a corona discharge in the point-to-ring electrode configuration. The electrical and emission properties of both discharges are reported. The microbicidal effect of NTP sources was tested on three strains of the bacterium Staphylococcus aureus (including the methicillin-resistant strain), the bacterium Pseudomonas aeruginosa, the yeast Candida albicans, and the micromycete Trichophyton interdigitale. In general, the cometary discharge is a less stable source of NTP and mostly forms smaller but more rapidly emerging inhibition zones on agar plates. Due to the point-to-ring electrode configuration, the second type of discharge has higher stability and provides larger affected but often not completely inhibited zones. However, after 60 min of exposure, the NTP sources based on the cometary and point-to-ring discharges showed a similar microbicidal effect for bacteria and an individual effect for microscopic fungi.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4173
Author(s):  
Petra Šrámková ◽  
Zlata Kelar Tučeková ◽  
Michal Fleischer ◽  
Jakub Kelar ◽  
Dušan Kováčik

Biaxially oriented polypropylene (BOPP) is a highly transparent polymer defined by excellent mechanical and barrier properties applicable in the food packaging industry. However, its low surface free energy restricts its use in many industrial processes and needs to be improved. The presented study modifies a BOPP surface using two different atmospheric-pressure plasma sources operating in ambient air and capable of inline processing. The volume dielectric barrier discharge (VDBD) and diffuse coplanar surface barrier discharge (DCSBD) were applied to improve the wettability and adhesion of the 1–10 s treated surface. The changes in morphology and surface chemistry were analyzed by SEM, AFM, WCA/SFE, and XPS, and adhesion was evaluated by a peel force test. Comparing both plasma sources revealed their similar effect on surface wettability and incorporation of polar functional groups. Additionally, higher surface roughness in the case of VDBD treatment contributed to slightly more efficient adhesion in comparison to DCSBD. Although we achieved comparable results for both plasma sources in the term of enhanced surface wettability, degree of oxidation, and stability of induced changes, DCSBD had less effect on the surface deterioration than VDBD, where surface structuring caused an undesirable haze.


2021 ◽  
pp. 202-231
Author(s):  
Alinka Vesel ◽  
Miran Mozetic ◽  
A. Ricard

2021 ◽  
Vol 2064 (1) ◽  
pp. 012033
Author(s):  
V A Kokshenev ◽  
N E Kurmaev

Abstract Plasma sources based on high-current discharges (up to 20 kA) in vapors of an aluminum electrode material with initiation over the ceramic surface are investigated. Plasma flows with a divergence angle ≤ 20° and a pulse pressure of ~ 106 Pa were obtained. A design of a crowbar spark gap based on a plasma switch with developed plasma sources built into a magnetically insulated transmission line has been proposed and tested. A crowbar mode is implemented in the transmission line with a current of a mega-ampere level with a cut-off of the load circuit from the megajoule generator GIT-12 for the period of discharge of the Marx generator.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012036
Author(s):  
I S Egorov ◽  
A V Klimkin ◽  
A V Poloskov ◽  
M A Serebrennikov ◽  
M V Trigub

Abstract One of the directions of using plasma sources is the formation of plasma emitters for electron beams as part of direct-action charged particle accelerators. The parameters of the accelerator generators require mutual matching with the characteristics of the plasma emitters. The paper describes the design, composition and diagnostic equipment of an experimental stand based on a vacuum chamber of a pulsed electron accelerator for testing plasma sources of pulsed electron beams. The stand includes a vacuum volume with a high-voltage bushing, pumping out pipes, diagnostic windows along the perimeter and a mounting flange of a complex device for diagnosing the characteristics of pulsed electron beams. The stand provides the possibility of controlled supply of gas and liquid to the formation region of the plasma emitter of electrons under the influence of an accelerating voltage pulse. The location of the diagnostic windows and flanges of the stand allows direct optical observations of the plasma formation region in the frontal and profile directions. The use of the stand will make it possible to determine the characteristics of the tested plasma emitters for their operation as part of a vacuum diode of pulsed electron accelerator.


2021 ◽  
Vol MA2021-02 (16) ◽  
pp. 684-684
Author(s):  
Xinpei Lu

2021 ◽  
Vol 49 (10) ◽  
pp. 3051-3058
Author(s):  
Henrike Jakob ◽  
Minkwan Kim

Sign in / Sign up

Export Citation Format

Share Document