Removal of Acid Violet 17 by Electrocoagulation Using Plain and Extended Surface Electrodes

2021 ◽  
Vol 25 (3) ◽  
pp. 06021002
Author(s):  
Anupam Pathak ◽  
Vinita Khandegar ◽  
Arinjay Kumar
Author(s):  
M. Pan ◽  
J.M. Cowley

Electron microdiffraction patterns, obtained when a small electron probe with diameter of 10-15 Å is directed to run parallel to and outside a flat crystal surface, are sensitive to the surface nature of the crystals. Dynamical diffraction calculations have shown that most of the experimental observations for a flat (100) face of a MgO crystal, such as the streaking of the central spot in the surface normal direction and (100)-type forbidden reflections etc., could be explained satisfactorily by assuming a modified image potential field outside the crystal surface. However the origin of this extended surface potential remains uncertain. A theoretical analysis by Howie et al suggests that the surface image potential should have a form different from above-mentioned image potential and also be smaller by several orders of magnitude. Nevertheless the surface potential distribution may in practice be modified in various ways, such as by the adsorption of a monolayer of gas molecules.


Author(s):  
Colin F. Wilson ◽  
Thomas Widemann ◽  
Richard Ghail

AbstractIn this paper, originally submitted in answer to ESA’s “Voyage 2050” call to shape the agency’s space science missions in the 2035–2050 timeframe, we emphasize the importance of a Venus exploration programme for the wider goal of understanding the diversity and evolution of habitable planets. Comparing the interior, surface, and atmosphere evolution of Earth, Mars, and Venus is essential to understanding what processes determined habitability of our own planet and Earth-like planets everywhere. This is particularly true in an era where we expect thousands, and then millions, of terrestrial exoplanets to be discovered. Earth and Mars have already dedicated exploration programmes, but our understanding of Venus, particularly of its geology and its history, lags behind. Multiple exploration vehicles will be needed to characterize Venus’ richly varied interior, surface, atmosphere and magnetosphere environments. Between now and 2050 we recommend that ESA launch at least two M-class missions to Venus (in order of priority): a geophysics-focussed orbiter (the currently proposed M5 EnVision orbiter – [1] – or equivalent); and an in situ atmospheric mission (such as the M3 EVE balloon mission – [2]). An in situ and orbital mission could be combined in a single L-class mission, as was argued in responses to the call for L2/L3 themes [3–5]. After these two missions, further priorities include a surface lander demonstrating the high-temperature technologies needed for extended surface missions; and/or a further orbiter with follow-up high-resolution surface radar imaging, and atmospheric and/or ionospheric investigations.


Chemosphere ◽  
2021 ◽  
Vol 271 ◽  
pp. 129804
Author(s):  
Oscar M. Cornejo ◽  
Mariela Ortiz ◽  
Zaira G. Aguilar ◽  
José L. Nava
Keyword(s):  

2020 ◽  
Vol 18 (1) ◽  
pp. 399-411
Author(s):  
Eman Alzahrani

AbstractA unique method was used to synthesize extremely stable silver stearate nanoparticles (AgStNPs) incorporated in an organic-based monolith. The facile strategy was then used to selectively isolate hemeproteins, myoglobin (Myo) and hemoglobin (Hb). Ethyl alcohol, silver nitrate, and stearic acid were, respectively, utilized as reducing agents, silver precursors, and capping agents. The color changed to cloudy from transparent, indicating that AgStNPs had been formed. AgStNP nanostructures were then distinctly integrated into the natural polymeric scaffold. To characterize the AgStNP–methacrylate polymeric monolith and the silver nanoparticles, energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and Fourier-transform infrared (FT-IR) spectroscopy were used. The results of the SEM analysis indicated that the AgStNP–methacrylate polymeric monolith’s texture was so rough in comparison with that of the methacrylate polymeric monolith, indicating that the extraction process of the monolith materials would be more efficient because of the extended surface area of the absorbent. The comparison between the FT-IR spectra of AgStNPs, the bare organic monolith, and AgStNP–methacrylate polymeric monolith confirms that the AgStNPs were immobilized on the surface of the organic monolith. The EDX profile of the built materials indicated an advanced peak of the Ag sequence which represented an Ag atom of 3.27%. The results therefore established that the AgStNPs had been successfully integrated into the monolithic materials. Extraction efficiencies of 92% and 97% were used to, respectively, recover preconcentrated Myo and Hb. An uncomplicated method is a unique approach of both fabrication and utilization of the nanosorbent to selectively isolate hemeproteins. The process can further be implemented by using other noble metals.


2021 ◽  
pp. 2001182
Author(s):  
Fabian Meder ◽  
Sirgi Saar ◽  
Silvia Taccola ◽  
Carlo Filippeschi ◽  
Virgilio Mattoli ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1631
Author(s):  
Camila F. Olguín ◽  
Nicolás Agurto ◽  
Carlos P. Silva ◽  
Carolina P. Candia ◽  
Mireya Santander-Nelli ◽  
...  

Current selective modification methods, coupled with functionalization through organic or inorganic molecules, are crucial for designing and constructing custom-made molecular materials that act as electroactive interfaces. A versatile method for derivatizing surfaces is through an aryl diazonium salt reduction reaction (DSRR). A prominent feature of this strategy is that it can be carried out on various materials. Using the DSRR, we modified gold surface electrodes with 4-aminebenzene from 4-nitrobenzenediazonium tetrafluoroborate (NBTF), regulating the deposited mass of the aryl film to achieve covering control on the electrode surface. We got different degrees of covering: monolayer, intermediate, and multilayer. Afterwards, the ArNO2 end groups were electrochemically reduced to ArNH2 and functionalized with Fe(II)-Phthalocyanine to study the catalytic performance for the oxygen reduction reaction (ORR). The thickness of the electrode covering determines its response in front of ORR. Interestingly, the experimental results showed that an intermediate covering film presents a better electrocatalytic response for ORR, driving the reaction by a four-electron pathway.


Sign in / Sign up

Export Citation Format

Share Document