Fatigue Life Assessment of Traffic-Signal Support Structures from an Analytical Approach and Long-Term Vibration Monitoring Data

2016 ◽  
Vol 142 (6) ◽  
pp. 04016017 ◽  
Author(s):  
Jie Ding ◽  
Xinzhong Chen ◽  
Delong Zuo ◽  
Jieying Hua
2018 ◽  
Vol 19 (01) ◽  
pp. 1940013 ◽  
Author(s):  
X. W. Ye ◽  
Y. H. Su ◽  
T. Jin ◽  
B. Chen ◽  
J. P. Han

The accuracy of fatigue life assessment for the welded joint in a steel bridge is largely dependent on an appropriate [Formula: see text]-[Formula: see text] curve. In this paper, a master [Formula: see text]-[Formula: see text] curve-based fatigue life assessment approach for the welded joint with an open-rib in orthotropic steel bridge deck is proposed based on the finite element model (FEM) and field monitoring data from structural health monitoring (SHM) system. The case studies on fatigue life assessment by use of finite element analysis (FEA) for constant-amplitude cyclic loading mode and field monitoring data under variable-amplitude cyclic loading mode are addressed. In the case of FEA, the distribution of structural stress at fatigue-prone weld toe is achieved using 4-node shell element model and then transformed into equivalent structural stress by fracture mechanics theory. The fatigue life of the welded joint is estimated with a single master [Formula: see text]-[Formula: see text] curve in the form of equivalent structural stress range versus the cycles to failure. In the case of monitoring data-based fatigue life assessment, the daily history of structural stress at diaphragm to U-rib is derived from the raw strain data measured by the instrumented fiber Bragg grating (FBG) sensors and transformed into equivalent structural stress. The fatigue life of the investigated welded joint is calculated by cyclic counting method and Palmgren–Miner linear damage cumulative rule. The master [Formula: see text]-[Formula: see text] curve method provides an effective fatigue life assessment process, especially when the nominal stress is hard to be defined. A single master [Formula: see text]-[Formula: see text] curve will facilitate to solve the difficulty in choosing a proper [Formula: see text]-[Formula: see text] curve which is required in the traditional fatigue life assessment methods.


2006 ◽  
Vol 321-323 ◽  
pp. 223-229 ◽  
Author(s):  
Yi Qing Ni ◽  
X.W. Ye ◽  
Jan Ming Ko

A method for probabilistic fatigue life assessment of steel bridges by using long-term monitoring data is proposed and applied for fatigue reliability analysis of the suspension Tsing Ma Bridge. In this method, the daily number of cycles for each stress range is obtained from the measured stress history and its probability distribution is estimated based on statistical analysis of long-term measurement data. The statistics obtained for all concerned stress ranges is combined with the S−N relationships stipulated in specifications to conduct a probabilistic assessment of fatigue life with the use of the Palmgren-Miner rule, from which the mean value and standard deviation of the fatigue life as well as the failure probability and reliability index versus fatigue life are obtained. The proposed method is illustrated by using 80-day strain measurement data from the suspension Tsing Ma Bridge which is instrumented with a long-term structural health monitoring system.


Sign in / Sign up

Export Citation Format

Share Document