Finite Element Based Vehicle Component Fatigue Life Assessment According to a Customer Usage Profile

2014 ◽  
Vol 56 (3) ◽  
pp. 198-207 ◽  
Author(s):  
Arif Şenol Şener
2014 ◽  
Vol 945-949 ◽  
pp. 1086-1089
Author(s):  
Bin Xu ◽  
Tao Zhang ◽  
Feng Qi Wu ◽  
Zhen Rong Yan

Ship unloader crane was widely used in transportation, and uploaded or unloaded cargoes from ships, which could influence efficiency and benefits of transportation greatly. In order to improve the reliability and safety, and decrease its risk in working flow, a method of fatigue life assessment was proposed in this paper. According to related standards and properties of risk, finite element method and experimental stress analysis were integrated to assess the working condition of a ship unloader crane. Finite element models of primary structures subjected to loads were built to achieve dynamic properties, which could supply a basic reference to experiment and guidance to locate the tested positions. Afterwards, wireless dynamic resistance strain-gauges were adopted to execute static and dynamic stress, and the tested results combined with finite element analysis were applied to strength analysis. Based on nominal stress and Miner principle, rainflow method was developed to fatigue life assessment of this ship unloader crane. The final results indicated that residual life of this crane was 4.67 years.


2019 ◽  
Vol 13 (2) ◽  
pp. 5048-5073
Author(s):  
Brahami Riad ◽  
Hamri Okba ◽  
Sfarni Samir

This article presents a study of the fatigue strength of welded parts in a crane boom. First, a finite element analysis was carried out over the whole structure. Two critical welded zones were identified and a detailed analysis was carried on them, in the form of sub-models. Three different approaches for estimating the structural stress in welded zones, were presented and applied to each sub-model. Results were compared and discussed. The evaluation of fatigue resistance by the use of appropriate S-N curves for each method was also carried out and discussed. The use of these approaches on a complex industrial structure, and on tubular joints with hollow sections required to perform many adaptations and to solve several difficulties presented hereafter.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Hui Li ◽  
Bo Zhao ◽  
Han Zhu

Under traffic loads, orthotropic steel bridge slabs suffer from an obvious fatigue problem. In particular, fatigue cracking of diaphragms seriously affects application and development of orthotropic bridge slabs. In the paper, based on cracking status quo of an orthotropic deck diaphragm of a large-span bridge, experimental tests were formulated to test stress distribution states of the diaphragm. The finite element software ABAQUS was used to establish a finite element model of the orthotropic deck diaphragm; numerical simulation was conducted on the basis of the experiments. Simulation results were compared with experimental results, so correctness of the finite element model was verified. Finally, Local Strain Approach (LSA) and Theory of Critical Distance (TCD) were used to conduct life assessment of the orthotropic deck diaphragms, and applicability of two methods was discussed. In this way, a fatigue life assessment method with high accuracy and good operability was provided for fatigue life assessment of orthotropic deck diaphragms.


2018 ◽  
Vol 19 (01) ◽  
pp. 1940013 ◽  
Author(s):  
X. W. Ye ◽  
Y. H. Su ◽  
T. Jin ◽  
B. Chen ◽  
J. P. Han

The accuracy of fatigue life assessment for the welded joint in a steel bridge is largely dependent on an appropriate [Formula: see text]-[Formula: see text] curve. In this paper, a master [Formula: see text]-[Formula: see text] curve-based fatigue life assessment approach for the welded joint with an open-rib in orthotropic steel bridge deck is proposed based on the finite element model (FEM) and field monitoring data from structural health monitoring (SHM) system. The case studies on fatigue life assessment by use of finite element analysis (FEA) for constant-amplitude cyclic loading mode and field monitoring data under variable-amplitude cyclic loading mode are addressed. In the case of FEA, the distribution of structural stress at fatigue-prone weld toe is achieved using 4-node shell element model and then transformed into equivalent structural stress by fracture mechanics theory. The fatigue life of the welded joint is estimated with a single master [Formula: see text]-[Formula: see text] curve in the form of equivalent structural stress range versus the cycles to failure. In the case of monitoring data-based fatigue life assessment, the daily history of structural stress at diaphragm to U-rib is derived from the raw strain data measured by the instrumented fiber Bragg grating (FBG) sensors and transformed into equivalent structural stress. The fatigue life of the investigated welded joint is calculated by cyclic counting method and Palmgren–Miner linear damage cumulative rule. The master [Formula: see text]-[Formula: see text] curve method provides an effective fatigue life assessment process, especially when the nominal stress is hard to be defined. A single master [Formula: see text]-[Formula: see text] curve will facilitate to solve the difficulty in choosing a proper [Formula: see text]-[Formula: see text] curve which is required in the traditional fatigue life assessment methods.


Sign in / Sign up

Export Citation Format

Share Document