scholarly journals Lateral-Load Resistance of Cross-Laminated Timber Shear Walls

2017 ◽  
Vol 143 (12) ◽  
pp. 06017006 ◽  
Author(s):  
Thomas Reynolds ◽  
Robert Foster ◽  
Julie Bregulla ◽  
Wen-Shao Chang ◽  
Richard Harris ◽  
...  
2009 ◽  
Vol 15 (4) ◽  
pp. 122-130 ◽  
Author(s):  
Ali M. Memari ◽  
Bohumil Kasal ◽  
Harvey B. Manbeck ◽  
Andrew R. Adams

2016 ◽  
Vol 857 ◽  
pp. 19-23
Author(s):  
Ann Peter Minu ◽  
A.S. Sajith ◽  
Nagarajan Praveen

Diagrid structures are exterior structures, consisting of diagonal struts and ties in the periphery and an interior core. These diagonal members carry gravity load and lateral load by the axial action of the member. Due to the structural efficiency of diagrids, interior and corner columns can be avoided thereby providing flexibility in the floor plan. The diagrid structures are emerging as popular structural system in many developed countries of the world, but in India it is yet to gain importance. This paper presents a review on the literature of diagrid structures. Studies conducted on diagrid structures to determine the diagrid angle for the efficient design is presented. The stiffness-based methodology adopted for determining preliminary member sizes of steel diagrid structures and the effect of shear lag on high rise buildings with diagrid and its comparison with framed tube structures are discussed. The distribution of the load resisted by interior frame and diagrids is outlined. The parameters used in the comparison of analysis are time period, top storey displacement, inter-storey drift and storey shear. This paper also reviews the studies on the comparison of diagrids with regular configuration and diagrids with varying angles. The analysis and comparison of diagrid and conventional structural system on the basis of consumption of steel, structural weight and displacement are also highlighted. This review covers diagrids with all the materials in practice namely concrete, steel and concrete-filled steel tube(CFST).


Author(s):  
Renate Fruchter ◽  
Helmut Krawinkler ◽  
Kincho H. Law

This paper discusses a work in progress in the development of computer tools for qualitative modeling analysis and evaluation of conceptual structural designs. In the conceptual design stage the description of a structure is incomplete and imprecise, and does not permit the use of traditional numerical analysis tools. We describe a prototype system, QLRS, for qualitative evaluation of lateral load resistance in frames. The primary goal of the evaluation of structural response is to identify undesirable structural behavior. In QLRS, the evaluation process consists of three basic tasks. (1) identification of the story and structure models comprising the lateral load resisting system. We term this task structural system interpretation. (2) Qualitative analysis of the story and structure models, and approximate evaluation of the story drifts. We term this task structural behavior interpretation. (3) Assessment of the performance of the lateral load resisting system, in which the results of the structural system interpretation and the structural behavior interpretation are compared against the requirements for complete load path and relative story drift. Currently, QLRS is able to reason about load path discontinuities and soft-story behavior problems in 2-D moment resisting frames.


Author(s):  
Trevor Kelly

Although shear walls are a widely used system for providing lateral load resistance, nonlinear analysis procedures for this type of element are much less well developed than those for frame and truss elements. Equivalent flexural models do not include shear deformation and are only suited for symmetric, straight walls. This paper describes the development of an analysis model which includes nonlinear effects for both shear and flexure. The formulation is based on a "macro" modelling approach which is suitable for complete building models in a design office environment. An analysis methodology is developed using engineering mechanics and experimental results and implemented in an existing nonlinear analysis computer program. A model is developed and validated against test results of solid walls and walls with openings. This shows that the model can capture the general characteristics of hysteretic response and the maximum strength of the wall. Results can be evaluated using acceptance criteria derived from published guidelines. An example shear wall building is then evaluated using both the nonlinear static and the nonlinear dynamic procedures. The procedure is shown to be a practical method for implementing performance based design procedures for shear wall buildings.


Sign in / Sign up

Export Citation Format

Share Document