load path
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 95)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 148 (3) ◽  
Author(s):  
Andrea Lucchini ◽  
José Melo ◽  
António Arêde ◽  
Humberto Varum ◽  
Paolo Franchin ◽  
...  
Keyword(s):  

2022 ◽  
Vol 20 (4) ◽  
pp. 093-114
Author(s):  
Viktar Tur ◽  
Andrei Tur ◽  
Aliaksandr Lizahub

The article presents the simplified implementation of alternative load path method based on the energy balance approach. This method should be used to check the global resistance of a damaged structural system after the occurrence of an accidental event. Basic assumptions of simplified analytical models for modelling resistance of horizontal ties in a damaged structural system, taking into account the membrane (chain) effects, were presented. An approach to modelling the dynamic resistance of a damaged structural system based on the energy balance method is described. Calculated dependencies for checking the robustness of a prefabricated multi-storey building with hollow-core slabs after the loss of the central column are proposed and considered using an example. On the considered example, a comparison of the required tie sections area with the dynamic resistance designed using the energy balance method (EBM) and according to the current standards, and a statistical assessment of the reliability of the load-bearing capacity models are carried out. In the end, a brief algorithm for the simplified calculation of the dynamic resistance of a damaged structural system is proposed.


2021 ◽  
Vol 169 ◽  
pp. 108448
Author(s):  
Peter Y. Wang ◽  
Parfait M. Masungi ◽  
Maria E.M. Garlock ◽  
Spencer E. Quiel

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaobo Zheng ◽  
Gang Zhang ◽  
Yongfei Zhang ◽  
Leping Ren

The geometric agreement, commonly hailed as load-transferring paths withinbridge structures, is significantly crucial to the bridge structural mechanicalperformance, such as capacity, deformation, and collapse behavior. This paperpresents a methodology dependent on alternative load paths to investigate thecollapse behavior of a double-pylon cable-stayed bridge with steel truss girderssubjected to excess vehicle loading. The cable-stayed bridge with steel trussgirders is simplified using a series-parallel load-bearing system. This researchmanifests that the enforced vehicle loading can be transferred to alternativepaths of cable-stayed bridges in different load-structure scenarios. A 3-Dfinite element model is established utilizing computer software ANSYS to explorethe collapse path of cable-stayed bridge with steel truss girders, taking intoaccount chord failure, loss of cables together with corrosion in steel trussgirders. The results show that chord failures in the mid-portion of the mainspan result in brittle damage in truss girders or even sudden bridge collapse. Further,the loss of long cables leads to ductile damage with significant displacement.The corrosion in steel truss girders has a highly slight influence on the collapsebehavior of cable-stayed bridge. The proposed methodology can be reliably usedto assess and determine the vulnerability of cable-stayed bridge with steeltruss girders during their service lifetime, thus preventing structural collapsesin this type of bridge.


CivilEng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 929-942
Author(s):  
Mohamed A. Shaheen ◽  
Mohamed Ahmed Galal ◽  
Lee S. Cunningham ◽  
Andrew S. J. Foster

A novel method to improve the robustness of steel end plate connections is presented in this paper. Existing commonly adopted techniques alter the stiffness of the beam or the end plate to improve the connection’s robustness. In this study, the robustness is enhanced by improving the contribution of the bolts to the rotational capacity of connections; the higher the bolts’ elongation, the higher the rotational capacity that can be achieved. However, the brittleness of the bolt material, combined with its small length, results in negligible elongation. Alternatively, the load path between the end plate and the bolts can be interrupted with a ductile element to achieve the required elongation. This can be achieved by inserting a steel sleeve with a designated length, thickness, and wall curvature between the end plate and the washer. The proposed sleeve should be designed so that its ultimate capacity is less than the force in the bolt at failure; accordingly, the sleeve develops a severe bending deformation before the failure of any connection components. Using a validated finite element model, end plate connections with various parameters are numerically investigated to understand the performance of the sleeve device. The proposed system substantially enhances the rotational capacity of the connections, ranging between 1.37 and 2.46 times that of the standard connection. It is also concluded that the sleeved connections exhibit a consistent elastic response with the standard connections, indicating the proposed system is compatible with codified elastic design approaches without modification. Furthermore, for a specific connection, various ductile responses can be achieved without altering the connection capacity nor configuration.


2021 ◽  
Vol 73 (09) ◽  
pp. 893-905

Sudden removal of load-bearing elements such as columns in engineering structures, and lack of sufficient capacity to withstand the overload caused by removal of these elements can cause damage and Progressive Collapse (PC) in structures. Therefore, the effect of sudden column removal and structural capacity against PC scenarios in medium and high-rise buildings is investigated in this study. The irregularity in height has a great influence on lateral behaviour of structures and it affects the design of cross-sections. Various sudden column removal scenarios are investigated in this research for steel structures with and without irregularity in height. To assess the effects of sudden column removal, the Alternate load Path Method (APM) and Nonlinear Dynamic Analysis (NDA) are utilized. In addition, a Nonlinear Static Analysis (NSA) is performed to investigate the capacity of structures against the PC phenomenon. Using OpenSees software, 10-, 15- and 20-storey structures with three distinct irregularity types are analysed during four different column removal scenarios. The results are presented in the form of static and dynamic nonlinear curves. The results indicate that making geometric irregularity in height in the sudden column removal scenario can cause the reduction of capacity and growth of the structural response in comparison to the structure with regularity in height. Moreover, the capacity of structures increases and the dynamic response declines by increasing the number of elements in the structures.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6464
Author(s):  
Wensen Zhang ◽  
Jian Fu ◽  
Yongling Fu ◽  
Jinlin Zhou ◽  
Xudong Han

With the development of more/all electric aircraft, replacement of the traditional hydraulic servo actuator (HSA) with an electromechanical actuator (EMA) is becoming increasingly attractive in the aerospace field. This paper takes an EMA for a trimmable horizontal stabilizer as an example and focuses on how to establish a system model with an appropriate level of complexity to support the model-based system engineering (MBSE) approach. To distinguish the nonlinear effects that dominate the required system performance, an incremental approach is proposed to progressively introduce individual nonlinear effects into models with different complexity levels. Considering the special design and working principle of the mechanical power transmission function for this actuator, the nonlinear dynamics, including friction and backlash from the no-back mechanism, and the nonlinear compliance effect from the mechanical load path are mainly taken into consideration. The modelling principles for each effect are addressed in detail and the parameter identification method is utilized to model these nonlinear effects realistically. Finally, the responses from each model and experimental results are compared to analyze and verify how each individual nonlinearity affects the system’s performance.


2021 ◽  
Vol 15 (58) ◽  
pp. 344-364
Author(s):  
Salim Çalışkan ◽  
Rıza Gürbüz

In engineering applications, fatigue phenomenon is a key issue and needs to be analyzed in the beginning of design phase in case of any component exposed to alternating loading on operation otherwise catastrophic fatigue failure may cause. Component can be designed with safe-life, fail-safe, and damage tolerant approach based on whether redundant load path and damage sensitive. Before starting analyzing the structure, material allowable data needs to be presented in a reliable way to predict fatigue life of components. SN curves with presented confidence levels are the robust approach to make a prediction on safe life of a structure in terms of fatigue. In this point, there are so many approaches to determine fatigue limit of materials and issue shall be handled by statistical manner. In literature, different staircase and curve fitting methods were presented to estimate endurance limit of materials and some reliability manuscript published. In this paper, fatigue limit of AISI 4340 steel will be investigated through most convinced staircase and curve fitting approaches and their reliability will be queried.


ATZ worldwide ◽  
2021 ◽  
Vol 123 (10) ◽  
pp. 42-47
Author(s):  
Eduard Haberkorn ◽  
Marco Pilaric ◽  
Udo Müller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document