timber shear walls
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Sung-Jun Pang ◽  
Kyung-Sun Ahn ◽  
Seog Goo Kang ◽  
Jung-Kwon Oh

AbstractIn this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.


2021 ◽  
Author(s):  
◽  
Abubakar Oyawoye

Cross-laminated timber (CLT) continues to establish a stronger footing in the Canadian construction industry, also as an option for lateral load resisting systems, such as shear walls. Recent modifications to the Canadian Standard for Engineering Design in Wood (CSA O86- 19) allow only rocking kinematics as energy dissipative mechanics for CLT shear walls, whereby hold-down must remain elastic. These provisions necessitate the development of novel hold-down solutions. In this report, the performance of a hyper-elastic high-capacity hold-down was investigated at the component level through tests on: (1) hold-down steel rod, (2) CLT housing, and (3) hold-down assemblies with different sizes of rubber pads. The tests demonstrated that: i) the rubber hold-down can remain elastic under a rocking kinematics provided that the elastic limit of the steel rod is not exceeded; ii) failure of the rod is the subsequent desired ductile mode; iii) the CLT width influences the failure mode; iv) the shape factor influences the achievable deformation of the rubber pad; v) increasing the rubber pad thickness reduces the hold-down stiffness; and vi) increasing the rubber pad width increases the hold-down stiffness. Numerical modelling and optimization suggested that using an intermediate steel laminate between layers of rubber pads could improve its performance. Based on the results of the investigations presented herein, a capacity-design procedure for the hyper-elastic hold-downs was proposed.


2020 ◽  
Vol 221 ◽  
pp. 111091
Author(s):  
Md Shahnewaz ◽  
Marjan Popovski ◽  
Thomas Tannert

Sign in / Sign up

Export Citation Format

Share Document