Analysis of Plane-Stress Systems via Total Potential Optimization Method Considering Nonlinear Behavior

2020 ◽  
Vol 146 (11) ◽  
pp. 04020249 ◽  
Author(s):  
Yusuf Cengiz Toklu ◽  
Aylin Ece Kayabekir ◽  
Gebrail Bekdaş ◽  
Sinan Melih Nigdeli ◽  
Melda Yücel
2019 ◽  
Vol 12 (1) ◽  
pp. 87-100
Author(s):  
R. M. LANES ◽  
M. GRECO ◽  
M. B. B. F. GUERRA

Abstract The search for representative resistant systems for a concrete structure requires deep knowledge about its mechanical behavior. Strut-and-tie models are classic analysis procedures to the design of reinforced concrete regions where there are stress concentrations, the so-called discontinuous regions of the structure. However, this model is strongly dependent of designer’s experience regarding the compatibility between the internal flow of loads, the material’s behavior, the geometry and boundary conditions. In this context, the present work has the objective of presenting the application of the strut-and-tie method in linear and non-linear on some typical structural elements, using the Evolutionary Topological Optimization Method (ESO). This optimization method considers the progressive reduction of stiffness with the removal of elements with low values of stresses. The equivalent truss system resulting from the analysis may provide greater safety and reliability.


Author(s):  
Jieyu Wang ◽  
Xianwen Kong

Abstract This paper discusses a novel optimization method to design statically balanced manipulators. Only springs are used to balance the manipulators composed of revolute (R) joints. Since the total potential energy of the system is constant when statically balanced, the sum of squared differences between the two potential energy when giving different random values of joint variables is set as the objective function. Then the optimization tool of MATLAB is used to obtain the spring attachment points. The results show that for a 1-link manipulator mounted on an R joint, in addition to attaching the spring right above the R joint, the attachment point can have offset. It also indicates that an arbitrary spatial manipulator with n link, whose weight cannot be neglected, can be balanced using n springs. Using this method, the static balancing can be readily achieved, with multiple solutions.


2011 ◽  
Vol 287-290 ◽  
pp. 73-76
Author(s):  
De Xin Zhang ◽  
Wei Guang An ◽  
Jin Fu Huang ◽  
Xue Bo Shao

To improve the situation of stress concentration in the combustion chamber component, optimized the design of combustion chamber shell structures is required. In this paper, a new boundary element integrated optimization method is used. There are a symmetry axis structure and effective constrained optimization model for sensitivity analysis. The technology and the general shape optimization algorithm are combined. The components' shape of the combustion chamber's shell under a plane stress is optimized, and finally, the satisfactory results are obtained and the maximum tangential bore stress is reduced.


Author(s):  
Takayuki Yamada ◽  
Shinji Nishiwaki ◽  
Atsuro Iga ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper proposes a new level set-based topology optimization method for thermal problems that deal with generic heat transfer boundaries including design-dependent boundary conditions, based on the level set method and the concept of the phase field theory. First, a topology optimization method using a level set model incorporating a fictitious interface energy derived from the concept of the phase field theory is briefly discussed. Next, a generic optimization problem for thermal problems is formulated based on the concept of total potential energy. An optimization algorithm that uses the Finite Element Method when solving the equilibrium equation and updating the level set function is then constructed. Finally, several three-dimensional numerical examples are provided to confirm the utility and validity of the proposed topology optimization method.


2013 ◽  
Vol 45 (2) ◽  
pp. 183-199 ◽  
Author(s):  
Yusuf Cengiz Toklu ◽  
Gebrail Bekdas ◽  
Rasim Temur

Author(s):  
Atsuro Iga ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

In this paper, a topology optimization method is constructed for thermal problems with generic heat transfer boundaries in a fixed design domain that includes design-dependent effects. First, the topology optimization method for thermal problems is briefly explained using a homogenization method for the relaxation of the design domain, where a continuous material distribution is assumed, to suppress numerical instabilities and checkerboards. Next, a method is developed for handling heat transfer boundaries between material and void regions that appear in the fixed design domain and move during the optimization process, using the Heaviside function as a function of node-based material density to extract the boundaries of the target structure being optimized so that the heat transfer boundary conditions can be set. Shape dependencies concerning heat transfer coefficients are also considered in the topology optimization scheme. The optimization problem is formulated using the concept of total potential energy and an optimization algorithm is constructed using the Finite Element Method and Sequential Linear Programming. Finally, several numerical examples are presented to confirm the usefulness of the proposed method.


Author(s):  
Ali Kaveh ◽  
Mehran Moradveisi

The main aim of this paper is to present a new solution for simultaneous shape and size optimization of double-layer grids. In order to find the optimum design, Enhanced Colliding Bodies Optimization method is applied to the optimum design of the most common examples of double-layer grids, while both material and geometrical nonlinearity are taken into account. The small and big sizes of span length are considered for each type of square grids. The algorithm gets the minimum weight grid by finding the best nodal location in z-direction (height of the structure) and the suitable selection from the list of tube sections available in American Institute of Steel Construction Load and Resistance Factor Design, simultaneously. All examples are optimized with strength and displacement constraints. The numerical results demonstrate the efficiency and robustness of the presented method for solving real-world practical double-layer grids.


Sign in / Sign up

Export Citation Format

Share Document