scholarly journals Erratum for “Finite-Element Modeling of Progressive Failure for Floor-to-Floor Assembly in the Precast Cross-Wall Structures” by Mosleh Tohidi and Alan Janby

2021 ◽  
Vol 147 (4) ◽  
pp. 08221001
Author(s):  
Mosleh Tohidi ◽  
Alan Janbey
Author(s):  
S. V. Yushchube ◽  
I. I. Podshivalov

The determination of mobility of the concrete foundation on a natural subgrade is rather relevant for the strength analysis of multistory brick buildings with a spatial cross-wall structural system. During the inelastic soil behavior, its ultimate limit and elastoplastic states are allowable along the concrete foundation perimeter, the bearing capacity of the foundation being provided as a whole. In this case, it is important to adhere to the standard conditions of the foundation deformation and mobility. The finite element modeling of the stress-strain state of the concrete foundation and the building superstructure of the base-foundation-building system is performed in the MicroFe software package. A consideration of inelastic soil deformations in the natural subgrade results in unacceptable displacements of the concrete foundation.


2015 ◽  
Vol 48 (1) ◽  
pp. 221-235 ◽  
Author(s):  
J Hajrasouliha ◽  
M Sheikhzadeh ◽  
M Moezzi ◽  
A Babaeian Amini

Reinforcement of the thin-wall structures under internal pressure by braiding method has many applications in different industries. In this way, the effective braid angle determination will be important in achieving a stable and resistant structure. The main aim of this work was finite element modeling and experimental validation of these structures under internal pressure. Therefore, a thin silicon pipe as the core was covered with different braid angles in braiding machine and then was subjected to internal pressure. After that, a finite element model was implemented for a repeatable part of the samples as a unit cell using ANSYS software to calculate the pressure–diameter diagram of the samples. Finally, in order to verify the accuracy of the finite element models was recorded the increase in braided pipes diameter up to rupture by camera and prepared pressure–diameter diagram for all samples by image processing method. The comparison of the finite element method results and image processing showed a good agreement with high accuracy. Also was observed in finite element modeling that the relationship between diameter-pressure in 55 degrees was rather linear, generating forces in the pipe surface of thin silicon due to internal pressure along braid strands direction as confirmed by image analysis.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

Sign in / Sign up

Export Citation Format

Share Document