uplift pressure
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 28)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 12 (2) ◽  
pp. 612
Author(s):  
Chunhui Ma ◽  
Tianhao Zhao ◽  
Gaochao Li ◽  
Anan Zhang ◽  
Lin Cheng

As an essential load of the concrete dam, the abnormal change of uplift pressure directly threatens the safety and stability of the concrete dam. Therefore, it is of great significance to accurately and efficiently excavate the hidden information of the uplift pressure monitoring data to clarify the safety state of the concrete dam. Therefore, in this paper, density-based spatial clustering of applications with noise (DBSCAN) method is used to intelligently identify the abnormal occurrence point and abnormal stable stage in the monitoring data. Then, an application method of measured uplift pressure is put forward to accurately reflect the spatial distribution and abnormal position of uplift pressure in the dam foundation. It is easy to calculate and connect with the finite element method through self-written software. Finally, the measured uplift pressure is applied to the finite element model of the concrete dam. By comparing the structural behavior of the concrete dam under the design and measured uplift pressure, the influence of abnormal uplift pressure on the safety state of the concrete dam is clarified, which can guide the project operation. Taking a 98.5 m concrete arch dam in western China as an example, the above analysis ideas and calculation methods have been verified. The abnormal identification method and uplift pressure applying method can provide ideas and tools for the structural diagnosis of a concrete dam.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Kailai Zhang ◽  
Liqun Xu ◽  
Liting Qiu ◽  
Jiacheng Tan ◽  
Chao Yang ◽  
...  

During the long-term service life of hydraulic structures, the calcium compounds in cement-based materials decompose in the aqueous environment, leading to the continuous change of seepage characteristics. To study the influence of calcium leaching on the concrete dam seepage characteristics, we proposed a new mathematic model of the cement-based material calcium leaching model under advection-diffusion-driven leaching. A solid-liquid nonequilibrium model is adopted to model the decomposition of calcium hydroxide (CH) and calcium silicate hydrate gel (C-S-H). To calculate the porosity more accurately, the proposed model takes the effect of different calcium compound decomposition on the porosity increase in consideration, respectively. Shimantan dam is selected for the three-dimensional (3D) calcium leaching analyses. The 3D finite element model of this dam is analyzed using COMSOL Multiphysics software that is based on the finite element method. Based on the proposed model, seepage characteristics evolutions of the Shimantan dam are studied. Good agreement between the numerical results and the monitored data indicates the accuracy of this simulation. The result shows that after 100 a leaching duration, the uplift pressure increases by 40.8%, and the leakage quantities of the dam body and foundation increase by 48 and 17 times. The rise of uplift pressure and leakage changes caused by curtain deterioration are the main influences of calcium leaching on the dam seepage. The parameter sensitivity results show that it is necessary to reduce CH content in cement-based materials to obtain better calcium leaching durability. This model and simulation results can guide the operation of concrete dams under advection-diffusion-driven leaching.


2021 ◽  
Vol 11 (1) ◽  
pp. 744-754
Author(s):  
Marzena Lendo-Siwicka ◽  
Grzegorz Wrzesiński ◽  
Katarzyna Pawluk

Abstract Improper recognition of the subsoil is the most common cause of problems in the implementation of construction projects and construction facilities failures. Most often, their direct cause is the mismatch of the scope of geotechnical diagnosis to the appropriate geotechnical category, or substantive errors, including incomplete or incorrect interpretation in the creation of a geological-engineering model and often overlooked hydrogeological conditions. In many cases, insufficient recognition and documentation of geotechnical and/or geological and engineering conditions leads to damage and construction failures, delays in consider construction, and the increase of the investment budget. That’s why, in order to avoid the above, particular attention should be paid to proper geotechnical and geological-engineering documentation at the design and construction stages. The selected example of the investment analyzed errors in the geological-engineering documentation, which mainly concerned the lack of recognition of locally occurring organic soils, the incorrectly determined location of the groundwater table and the degree of compaction of non-cohesive soils, and numerous errors of calculated values of soil uplift pressure. The detection of the errors presented in the paper made it possible to select the correct technology for the construction of the sanitary sewage system and to increase the thickness of the horizontal shutter made of jet grouting columns in the area of the excavation. In addition, the article discusses the principles of proper calculation of limit states and subsoil testing, which have a significant impact on the implementation of planned investments.


Sign in / Sign up

Export Citation Format

Share Document