A Distributed Object Component-Based Approach to Large-Scale Engineering Systems and an Example Component Using Motion Planning Techniques for Disabled Access Usability Analysis

Author(s):  
Charles S. Han ◽  
John C. Kunz ◽  
Kincho H. Law
2020 ◽  
Vol 69 ◽  
pp. 471-500
Author(s):  
Shih-Yun Lo ◽  
Shiqi Zhang ◽  
Peter Stone

Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.


2020 ◽  
Vol 357 (12) ◽  
pp. 8181-8202
Author(s):  
Jinxin Wang ◽  
Zhongwei Wang ◽  
Xiuzhen Ma ◽  
Ann Smith ◽  
Fengshou Gu ◽  
...  

Author(s):  
Imre J. Rudas*and Leon Zlajpah** ◽  

In engineering practice we often have to deal with complex systems, where the conventional approaches for understanding and predicting the behavior of the system can prove to be inadequate. Hence, the researchers try to put some intelligence into the system. The term intelligence in this context still more or less remains a mysterious phenomenon and can be characterized by different abilities of the system or machine, such as adaptation, decision-making, learning, recognition, diagnostics, autonomy, etc. Many of the new results related to this area are published in Journals and in International Conference Proceedings. One such conference is the "IEEE International Conference on Intelligent Engineering Systems". The fourth conference in this series (INES 2000) took place in Portoroz, Slovenia, on September 17-19,2000. There were around eighty participants from eighteen countries around the world. We are glad that so many authors have contributed to ideas related to the issues at the conference. Many of the papers were about applications and design, and others on more theoretical aspects of intelligent systems. This variety made the selection of papers for this special issue very difficult. Eight papers have been selected in the end, which cover different aspects of intelligent engineering systems. It should be pointed out that the respective authors were also kind to revise and update the presented papers for this special issue. The first paper deals with the manipulation problem where the motion changes depending on the state of the system as it is the case in the finger gaiting applications. To solve it the semi-stratified control theory using smooth motion planning is used. The proposed concept combines the stratified motion planning with the unconstrained finger allocations. In the second paper a special branch of Soft Computing developed for the control of mechanical devices is described. It reduces the number of free parameters and computational complexity. For illustration of the efficiency of the proposed adaptive control, a simulation of polishing with a 3 DOF robot is given. The next paper discusses the force control of redundant robots in an unstructured environment. A special attention is given to the decoupling of the task space and null space motion. For that the minimal null space approach is used. The proposed impedance controller assures good task space performances and minimizes the disturbances caused by obstacles. The performance of the proposed controllers has been evaluated by the simulation and by experiments on a real robot. The forth paper presents some advanced modeling approaches and methods. As one of the key issues a manufacturing process model fully associative with form feature based part model has been introduced. The motivation has been that the low level integration of design and manufacturing of mechanical parts, as identified by the authors, is still a main drawback of efficient application of expensive modeling systems. The proposed method allows for creating part model simultaneously with their analysis of machineability. The next paper discusses the design of fractal-order discrete-time controllers. Some approaches to implement fractal derivatives and integrals are analyzed. As the application of the theory of fractional calculus is rather new, many aspects remain to be investigated. The sixth paper demonstrates how to map classical dictionaries and similar structured data to a hypertext structure that is more suitable for the modern media. To achieve the new shape automatically, the HiLog language is used. The automated mapping is illustrated by an example based on Oxford Dictionary of Modern English. In the seventh paper a humanoid robotics shoulder is compared to the human shoulder. First, the capabilities of the robotics shoulder are analyzed and next, using the optical measurement system the human shoulder movements have been measured and analyzed. The last paper discusses the bias-variance tests on multi-layer perception. The performance of Bayesian neural networks is compared with the performance of neural networks trained with a gradient method. Additionally, it is analyzed if it is possible to use a number of networks in committee trained with gradient descent to achieve the performance of a Bayesian network.


2011 ◽  
Vol 15 (1) ◽  
pp. 41-61 ◽  
Author(s):  
Jason E. Bartolomei ◽  
Daniel E. Hastings ◽  
Richard de Neufville ◽  
Donna H. Rhodes

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Long Chen ◽  
Jennifer Whyte

PurposeAs the engineering design process becomes increasingly complex, multidisciplinary teams need to work together, integrating diverse expertise across a range of disciplinary models. Where changes arise, these design teams often find it difficult to handle these design changes due to the complexity and interdependencies inherent in engineering systems. This paper aims to develop an innovative approach to clarifying system interdependencies and predicting the design change propagation at the asset level in complex engineering systems based on the digital-twin-driven design structure matrix (DSM).Design/methodology/approachThe paper first defines the digital-twin-driven DSM in terms of elements and interdependencies, where the authors have defined three types of interdependency, namely, geospatial, physical and logical, at the asset level. The digital twin model was then used to generate the large-scale DSMs of complex engineering systems. The cluster analysis was further conducted based on the improved Idicula–Gutierrez–Thebeau algorithm (IGTA-Plus) to decompose such DSMs into modules for the convenience and efficiency of predicting design change propagation. Finally, a design change propagation prediction method based on the digital-twin-driven DSM has been developed by integrating the change prediction method (CPM), a load-capacity model and fuzzy linguistics. A section of an infrastructure mega-project in London was selected as a case study to illustrate and validate the developed approach.FindingsThe digital-twin-driven DSM has been formally defined by the spatial algebra and Industry Foundation Classes (IFC) schema. Based on the definitions, an innovative approach has been further developed to (1) automatically generate a digital-twin-driven DSM through the use of IFC files, (2) to decompose these large-scale DSMs into modules through the use of IGTA-Plus and (3) predict the design change propagation by integrating a digital-twin-driven DSM, CPM, a load-capacity model and fuzzy linguistics. From the case study, the results showed that the developed approach can help designers to predict and manage design changes quantitatively and conveniently.Originality/valueThis research contributes to a new perspective of the DSM and digital twin for design change management and can be beneficial to assist designers in making reasonable decisions when changing the designs of complex engineering systems.


Sign in / Sign up

Export Citation Format

Share Document