scholarly journals The PETLON Algorithm to Plan Efficiently for Task-Level-Optimal Navigation

2020 ◽  
Vol 69 ◽  
pp. 471-500
Author(s):  
Shih-Yun Lo ◽  
Shiqi Zhang ◽  
Peter Stone

Intelligent mobile robots have recently become able to operate autonomously in large-scale indoor environments for extended periods of time. In this process, mobile robots need the capabilities of both task and motion planning. Task planning in such environments involves sequencing the robot’s high-level goals and subgoals, and typically requires reasoning about the locations of people, rooms, and objects in the environment, and their interactions to achieve a goal. One of the prerequisites for optimal task planning that is often overlooked is having an accurate estimate of the actual distance (or time) a robot needs to navigate from one location to another. State-of-the-art motion planning algorithms, though often computationally complex, are designed exactly for this purpose of finding routes through constrained spaces. In this article, we focus on integrating task and motion planning (TMP) to achieve task-level-optimal planning for robot navigation while maintaining manageable computational efficiency. To this end, we introduce TMP algorithm PETLON (Planning Efficiently for Task-Level-Optimal Navigation), including two configurations with different trade-offs over computational expenses between task and motion planning, for everyday service tasks using a mobile robot. Experiments have been conducted both in simulation and on a mobile robot using object delivery tasks in an indoor office environment. The key observation from the results is that PETLON is more efficient than a baseline approach that pre-computes motion costs of all possible navigation actions, while still producing plans that are optimal at the task level. We provide results with two different task planning paradigms in the implementation of PETLON, and offer TMP practitioners guidelines for the selection of task planners from an engineering perspective.

2013 ◽  
Vol 441 ◽  
pp. 796-800
Author(s):  
Chun Shu Li ◽  
Zhi Hua Yang ◽  
Gen Qun Cui ◽  
Bo Jin

Aiming at the odor source localization in an obstacle-filled wind-varying indoor environment, a new method based odor source localization algorithm for a single mobile robot is proposed. With the information of the wind and the concentration gradient, Wasps can find odor source in a short time. However, it is very difficult for mobile robots to mimic the behaviors of wasps exactly. So, besides the bionics, BP neural network is adopted for the mobile robot to find the odor source. The control strategies for the plume-tracing mobile robot are proposed which include the intelligent plume-tracing algorithm and the collision avoidance algorithm based on improved potential grid method. The algorithms were integrated to control the robot trace plumes in obstructed indoor environments. Experimental results have demonstrated the capability of this kind of plume-tracing mobile robot.


Author(s):  
KS Nagla ◽  
Moin Uddin ◽  
Dilbag Singh

<p>Sensor based perception of the environment is an emerging area of the mobile robot research where sensors play a pivotal role. For autonomous mobile robots, the fundamental requirement is the convergent of the range information in to high level internal representation. Internal representation in the form of occupancy grid is commonly used in autonomous mobile robots due to its various advantages. There are several sensors such as vision sensor, laser rage finder, and ultrasonic and infrared sensors etc. play roles in mapping. However the sensor information failure, sensor inaccuracies, noise, and slow response are the major causes of an error in the mapping. To improve the reliability of the mobile robot mapping multisensory data fusion is considered as an optimal solution. This paper presents a novel architecture of sensor fusion frame work in which a dedicated filter (DF) is proposed to increase the robustness of the occupancy grid for indoor environment. The technique has been experimentally verified for different indoor test environments. The proposed configuration shows improvement in the occupancy grid with the implementation of dedicated filters.</p>


2016 ◽  
Vol 14 (1) ◽  
pp. 172988141667813 ◽  
Author(s):  
Clara Gomez ◽  
Alejandra Carolina Hernandez ◽  
Jonathan Crespo ◽  
Ramon Barber

The aim of the work presented in this article is to develop a navigation system that allows a mobile robot to move autonomously in an indoor environment using perceptions of multiple events. A topological navigation system based on events that imitates human navigation using sensorimotor abilities and sensorial events is presented. The increasing interest in building autonomous mobile systems makes the detection and recognition of perceptions a crucial task. The system proposed can be considered a perceptive navigation system as the navigation process is based on perception and recognition of natural and artificial landmarks, among others. The innovation of this work resides in the use of an integration interface to handle multiple events concurrently, leading to a more complete and advanced navigation system. The developed architecture enhances the integration of new elements due to its modularity and the decoupling between modules. Finally, experiments have been carried out in several mobile robots, and their results show the feasibility of the navigation system proposed and the effectiveness of the sensorial data integration managed as events.


2014 ◽  
Vol 10 ◽  
pp. 50-54
Author(s):  
O.V. Darintsev ◽  
A.B. Migranov

We consider a two-level intelligent system for planning the movements of mobile robots, in which the search for the trajectory is carried out on two levels — a rough and precise planning subsystems. Insufficient resolution of vision systems at the upper level is compensated by sensor systems placed on board robots. The proposed approach reduces the resources required on-board control systems (are based on computer or controller) and optimization of traffic routes of all members of the group to achieve group goals.


Author(s):  
Alexander Stoytchev ◽  
◽  
Ronald C. Arkin

This paper describes a hybrid mobile robot architecture that addresses three main challenges for robots living in human-inhabited environments: how to operate in dynamic and unpredictable environment, how to deal with high-level human commands, and how to engage human users. The architecture combines three components: deliberative planning, reactive control, and motivational drives. It has been proven useful for controlling mobile robots in man-made environments. Results are reported for a fax delivery mission in a normal office environment.


1999 ◽  
Vol 11 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Motoji Yamamoto ◽  
◽  
Nobuhiro Ushimi ◽  
Akira Mohri

Sensor-based navigation used a target direction sensor for mobile robots among unknown obstacles in work space is discussed. The advantage of target direction information is robustness of measurement error for online navigation, compared to robot location information. Convergence of navigation using target direction information is discussed. An actual sensor system using two CdS sensors to measure target direction is proposed. Using target direction information, we present a new sensor based navigation algorithm in unknown obstacle environment. The navigation algorithm is based on target direction information, unlike sensor-based motion planning algorithms based on mobile robot location information. Using a sensor-based navigation system, we conducted a navigation experiment and simulations in unknown obstacle environment.


2019 ◽  
Vol 16 (3) ◽  
pp. 1244-1258 ◽  
Author(s):  
Xuebo Zhang ◽  
Jiarui Wang ◽  
Yongchun Fang ◽  
Jing Yuan

Sign in / Sign up

Export Citation Format

Share Document