A Multi-Objective Optimization Model and a Decision-Making Method for Traffic Signal Control

ICCTP 2010 ◽  
2010 ◽  
Author(s):  
Weiliang Zeng ◽  
Zhaocheng He ◽  
Ningning Chen
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yan Li ◽  
Lijie Yu ◽  
Siran Tao ◽  
Kuanmin Chen

For the purpose of improving the efficiency of traffic signal control for isolate intersection under oversaturated conditions, a multi-objective optimization algorithm for traffic signal control is proposed. Throughput maximum and average queue ratio minimum are selected as the optimization objectives of the traffic signal control under oversaturated condition. A simulation environment using VISSIM SCAPI was utilized to evaluate the convergence and the optimization results under various settings and traffic conditions. It is written by C++/CRL to connect the simulation software VISSIM and the proposed algorithm. The simulation results indicated that the signal timing plan generated by the proposed algorithm has good efficiency in managing the traffic flow at oversaturated intersection than the commonly utilized signal timing optimization software Synchro. The update frequency applied in the simulation environment was 120 s, and it can meet the requirements of signal timing plan update in real filed. Thus, the proposed algorithm has the capability of searching Pareto front of the multi-objective problem domain under both normal condition and over-saturated condition.


2018 ◽  
Vol 45 (11) ◽  
pp. 973-985
Author(s):  
Yuan-Yang Zou ◽  
Xue-Guo Xu ◽  
Gui-Hua Lin

In this paper, we consider an adaptive system for controlling green times at junction. For this adaptive system, we present a multi-objective optimization model, which is much easier to solve than some existing models. Furthermore, to solve the new model, we suggest an algorithm, called NLRMNSGA-II, which is based on the nonlinear least regression and a modified non-dominated sorting genetic algorithm. Our numerical experiments indicate that the NLRMNSGA-II is an efficient algorithm for the considered adaptive system.


Sign in / Sign up

Export Citation Format

Share Document