Smart Aggregate-Based Damage Detection of Circular RC Columns under Cyclic Combined Loading

Author(s):  
Yashar Moslehy ◽  
Haichang Gu ◽  
Abdeljalil Belarbi ◽  
Y. L. Mo ◽  
Gangbing Song
2010 ◽  
Vol 19 (6) ◽  
pp. 065021 ◽  
Author(s):  
Yashar Moslehy ◽  
Haichang Gu ◽  
Abdeldjelil Belarbi ◽  
Y L Mo ◽  
Gangbing Song

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6337
Author(s):  
Quang-Quang Pham ◽  
Ngoc-Loi Dang ◽  
Quoc-Bao Ta ◽  
Jeong-Tae Kim

This study investigates the feasibility of smart aggregate (SA) sensors and their optimal locations for impedance-based damage monitoring in prestressed concrete (PSC) anchorage zones. Firstly, numerical stress analyses are performed on the PSC anchorage zone to determine the location of potential damage that is induced by prestressing forces. Secondly, a simplified impedance model is briefly described for the SA sensor in the anchorage. Thirdly, numerical impedance analyses are performed to explore the sensitivities of a few SA sensors in the anchorage zone under the variation of prestressing forces and under the occurrence of artificial damage events. Finally, a real-scale PSC anchorage zone is experimentally examined to evaluate the optimal localization of the SA sensor for concrete damage detection. Impedance responses measured under a series of prestressing forces are statistically quantified to estimate the performance of damage monitoring via the SA sensor in the PSC anchorage.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1501 ◽  
Author(s):  
Weihang Gao ◽  
Hongnan Li ◽  
Siu Ho

Due to their multiple advantages, piezoceramic materials have been widely used in structural health monitoring (SHM). Piezoceramic patch-based smart aggregate (SA) and spherical piezoceramic-based smart aggregate (SSA) have been developed for damage detection of concrete structures. However, the stress waves generated by these two types of transducers are limited by their geometry and are unsuitable for use in two-dimensional concrete structures (e.g., shear walls, floors and cement concrete pavements). In this paper, a novel embeddable tubular smart aggregate (TSA) based on a piezoceramic tube was designed, fabricated and tested for use in two-dimensional (2D) structures. Due to its special geometry, radially uniform stress waves can be generated, and thus the TSA is suitable for damage detection in planar structures. The suitability of the transducer for use in structural health monitoring was investigated by characterizing the ability of the transducer to transmit and measure stress waves. Three experiments, including impedance analysis, time of arrival analysis and sweep frequency analysis, were conducted to test the proposed TSA. The experimental results show that the proposed TSA is suitable for monitoring the health condition of two-dimensional concrete structures.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 857-864
Author(s):  
S. N. Gangadharan ◽  
E. Nikolaidis ◽  
K. Lee ◽  
R. T. Haftka ◽  
R. Burdisso

Sign in / Sign up

Export Citation Format

Share Document