Analysis of Urban Slow-Moving Traffic Network Structure Characteristics Based on Complex Network Theory

ICCTP 2011 ◽  
2011 ◽  
Author(s):  
Congying Li ◽  
Zhaofei Wang
2014 ◽  
Vol 568-570 ◽  
pp. 1843-1849
Author(s):  
Da Chuan Liu ◽  
Jian Hua Zhang ◽  
Dan Wang ◽  
Hai Nan Li ◽  
Bo Zeng

Owing to more and more people concern about environment issues and reduction of fossil fuels, a growing number of distributed generations (DGs) are being interconnected to the power system. The active distribution network (ADN) provides an effective way to achieve the large scale connection and efficient utilization of them. This paper analyzes the vulnerability performance of active distribution network quantitatively and discusses the impact of DGs on the distribution network transmission efficiency under different grid structure through the application of complex network theory in power system. The example results show that meshed network structure can effectively promoting the consumption of DG and verify the feasibility of applying complex network theory to the distribution network for vulnerability analysis.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Rui Ding

The research on complex networks offers novel insight into the analysis of complex urban systems. The objective of this article is to provide a review of complex network theory in urban land-use and transport studies to date. Some traditional integrated studies of urban land-use and traffic networks are summarized and analysed; related research gaps were proposed. Then, this paper reviewed the application of complex network theory in urban land-use and transport research and practice. It shows that the node importance identification method is critical for network protection or attack studies; the multiple centrality assessment and kernel density estimation approaches can be used to represent the intuitionistic connections of urban traffic networks and surrounding land-uses; it can be used to verify the changing trend and variation of landscape connectivity; also it can be applied to the identification of key changed land-use types in land-use cover change; the coevolution process can be treated as an integrated way to discuss the relationships between urban traffic network growth and land-use change, and the multilayer networks based analysis is a novel method to measure their interactions. This paper is essential in establishing apparent research interests and points out the further potential application of complex network theory in urban traffic network and land-use related studies.


2014 ◽  
Vol 644-650 ◽  
pp. 2846-2849
Author(s):  
Fu Yan Wang ◽  
Sha Qiu ◽  
Qing Li

In this paper, 2112 specific correlation data of 2 types cluster were selected as sample to build a weighted network, including each hour sample is represented by a vertex and a correlation between 2 clusters is represented by an edge. We analysis this network structure by complex network theory and computer method. We found that the correlation clusters of 2 media have an important impact on this complex network, and the specific sample follow a frequency distribution of the weighted degrees. Applying the method of k-core shows small groups in this complex network, also the modularity calculating help us find out the key cluster, the correlation cluster, the medium cluster and the interaction path of them. An apparently small-world effect has found by the shortest path calculating effectively. All of these may provide a scientific and reasonable reference for further research.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Xu Zhang ◽  
Bingzhi Chen

AbstractComplex Network Theory can analyze the reliability of high-speed passenger traffic networks and also evaluate node importance. This paper conducts a systematic and in-depth research of importance of various nodes in the high-speed passenger traffic network so as to improve the high-speed passenger traffic network level. To study importance of network nodes can contribute to an in-depth understanding of the network structure. Therefore, the complex network is introduced and the node importance is evaluated. The characteristics of the complex network are briefly analyzed. In order to study the high-speed passenger traffic nodes, the network restraint coefficient, the network scale, the efficiency, the grade level, the partial clustering coefficient of degree and structural hole. Besides, the algorithm to calculate node importance is designed. Through analysis of the high-speed passenger network, the accuracy and practicability of the Complex Network Theory in evaluating node importance are pointed out. It is also proved that Complex Network Theory can help optimize high-speed passenger traffic networks and improve traffic efficiency.


Sign in / Sign up

Export Citation Format

Share Document