A Two Stage Optimization Approach for Calibrating Water Distribution Systems

Author(s):  
Masoud Asadzadeh ◽  
Bryan A. Tolson ◽  
Robert McKillop
Author(s):  
Antonio Candelieri ◽  
Andrea Ponti ◽  
Ilaria Giordani ◽  
Francesco Archetti

The main goal of this paper is to show that Bayesian optimization could be regarded as a general framework for the data driven modelling and solution of problems arising in water distribution systems. Hydraulic simulation, both scenario based, and Monte Carlo is a key tool in modelling in water distribution systems. The related optimization problems fall in a simulation/optimization framework in which objectives and constraints are often black-box. Bayesian Optimization (BO) is characterized by a surrogate model, usually a Gaussian process, but also a random forest and increasingly neural networks and an acquisition function which drives the search for new evaluation points. These modelling options make BO nonparametric, robust, flexible and sample efficient particularly suitable for simulation/optimization problems. A defining characteristic of BO is its versatility and flexibility, given for instance by different probabilistic models, in particular different kernels, different acquisition functions. These characteristics of the Bayesian optimization approach are exemplified by the two problems: cost/energy optimization in pump scheduling and optimal sensor placement for early detection on contaminant intrusion. Different surrogate models have been used both in explicit and implicit control schemes. Showing that BO can drive the process of learning control rules directly from operational data. BO can also be extended to multi-objective optimization. Two algorithms have been proposed for multi-objective detection problem using two different acquisition functions.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1364 ◽  
Author(s):  
Mengning Qiu ◽  
Mashor Housh ◽  
Avi Ostfeld

This paper presents a two-stage method for simultaneous least-cost design and operation of looped water distribution systems (WDSs). After partitioning the network into a chord and spanning trees, in the first stage, a reformulated linear programming (LP) method is used to find the least cost design of a WDS for a given set of flow distribution. In the second stage, a non-linear programming (NLP) method is used to find a new flow distribution that reduces the cost of the WDS operation given the WDS design obtained in stage one. The following features of the proposed two-stage method make it more appealing compared to other methods: (1) the reformulated LP stage can consistently reduce the penalty cost when designing a WDS under multiple loading conditions; (2) robustness as the number of loading conditions increases; (3) parameter tuning is not required; (4) the method reduces the computational burden significantly when compared to meta-heuristic methods; and (5) in oppose to an evolutionary “black box” based methodology such as a genetic algorithm, insights through analytical sensitivity analysis, while the algorithm progresses, are handy. The efficacy of the proposed methodology is demonstrated using two WDSs case studies.


WRPMD'99 ◽  
1999 ◽  
Author(s):  
P. Costa ◽  
A. Esposito ◽  
C. Gualtieri ◽  
D. Pianese ◽  
G. Pulci Doria ◽  
...  

Author(s):  
Mietek A. Brdys ◽  
Kazimierz Duzinkiewicz ◽  
Michal Grochowski ◽  
Tomasz Rutkowski

Sign in / Sign up

Export Citation Format

Share Document