Solids Loading Capacity of Stormwater Biomedia for Estimating Biofilter Longevity

Author(s):  
Jia Ma ◽  
James H. Lenhart ◽  
Karel Tracy
2019 ◽  
Vol 233 ◽  
pp. 230-235 ◽  
Author(s):  
Li-li Lu ◽  
Wen-ya Xiong ◽  
Jun-bin Ma ◽  
Tian-fang Gao ◽  
Si-yuan Peng ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Matthijs Rietveld ◽  
Francois Clemens ◽  
Jeroen Langeveld

Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jingtian Chen ◽  
Miao Wang ◽  
Yong Qian ◽  
Shanyuan Tan ◽  
Huan Wang ◽  
...  

Abstract Lignin is a natural macromolecular sun blocker and provides an ideal protection material for pesticides that have poor photostability. In this study, alkali lignin/prochloraz capsules (AL-P) were prepared via one-pot ultrasonic cavitation. The results demonstrated that the produced AL-P were uniform spheres with sizes of 170–375 nm. The prochloraz encapsulation efficiency (EE) and loading capacity (LC) reached as high as 91.8 and 98.5%, respectively. Adding a small of surfactant reduced the size of the capsules, but both EE and LC were decreased. AL-P exhibited excellent extended release performance. The cumulative release of AL-P in the first 45 h was 76.1% and continuous release was maintained after 96 h. The resulting AL-P have improved photostability under UV irradiation radiation. Finally, AL-P capsules were sprayed on the mango leaves and bananas to act as preservatives, AL-P capsules had stronger rain wash resistance and were better preserved demonstrating their industrial applicability. Together, organic solvent free AL-P capsules demonstrate a method to improve the efficiency of photosensitive pesticides.


2021 ◽  
Vol 11 (4) ◽  
pp. 1739
Author(s):  
Muhammad Ajaz Ahmed ◽  
Jae Hoon Lee ◽  
Joon Weon Choi

A synergistic combination of dioxane, acetic acid, and HCl was investigated for lignin extraction from pine wood biomass. After initial screening of reagent combination, response surface methodology (RSM) was used to optimize the lignin yield with respect to the variables of time 24–72 h, solids loading 5–15%, and catalyst dose 5–15 mL. A quadratic model predicted 8.33% of the lignin yield, and it was further confirmed experimentally and through the analysis of variance (ANOVA). Lignin at optimum combination exhibited features in terms of derivatization followed by reductive cleavage (DFRC) with a value of (305 µmol/gm), average molecular weights of 4358 and polydispersity of 1.65, and 2D heteronuclear single quantum coherence nuclear magnetic resonance spectrum (2D-HSQC NMR) analysis showing relative β-O-4 linkages (37.80%). From here it can be suggested that this fractionation can be one option for high quality lignin extraction from lignocellulosic biomass.


Sign in / Sign up

Export Citation Format

Share Document