A Case Study of Wave Equation Drivability Analysis for Super-Large Diameter Steel Pipe Pile

Author(s):  
L. Han ◽  
A. J. Yao ◽  
H. W. Lu
2012 ◽  
Vol 170-173 ◽  
pp. 747-750 ◽  
Author(s):  
Ming Yuan Zhang ◽  
Li Liang ◽  
Hua Zhu Song ◽  
Yan Li ◽  
Wen Tao Peng

In recent years, more and more large-diameter and super-long steel pipe piles are applied in engineering project. But people just know little about the bearing characteristics of super-long piles as it is very difficult to study such type of super-long piles in the laboratory and the accumulated test data of super-long piles in actual projects is very few restricted by test conditions and test cost. In engineering work, design value of bearing capacity of large-diameter and super-long piles is still referred to the calculation theory of ordinary pile that cannot take into account engineering security and economic simultaneously. In this paper, SVM-Q which is an intelligent algorithm based on Support Vector Machines is developed for predicting side friction of large-diameter and super-long steel pipe pile. Result shows that the side friction of longer large-diameter and super-long steel pipe piles with similar bearing characteristics can be effectively predicted by the SVM-Q algorithm after fully learning enough side friction data samples of the limited testing piles with gradually larger length, and boundary length of super-long steel pipe pile in this actual engineering could be qualitatively judged by comparing predictive data with the measured data. This method is very meaningful for initiative predicting the bearing capacity of large-diameter and super-long steel pipe piles in the case that there is no suitable calculation method. The predictive bearing capacity also can be adopted to verify the bearing capacity of large-diameter and super-long steel pipe piles that donot be field-tested by static load tests in actual projects.


2012 ◽  
Vol 256-259 ◽  
pp. 410-415 ◽  
Author(s):  
Kai Cheng Huo ◽  
Xu Qin ◽  
Huan Huan Yue

Combined with the uplift static load test of large-diameter steel pipe pile in Xiangshan Port bridge of Ningbo, make analysis of Q-s curve and s-lgt curve, axial force distribution curve and unit shaft resistance, revealing the uplift characteristic of the steel pipe pile. The analyses show that the uplift steel pipe pile is pure friction pile, the uplift load is decreased downward through the axial force of pile body, the shaft resistance gradually plays from top to bottom and play completely in the upper soil. Moreover, it has used hyperbolic model to fit the measured Q-s curve by Matlab software, and the fitting precision is high. Then make the hyperbolic model non-dimensional, and attempt to predict ultimate bearing capacity using the maximum curvature point of the non-dimensional hyperbolic model, to get some mechanical characteristic.


2012 ◽  
Vol 170-173 ◽  
pp. 743-746 ◽  
Author(s):  
Ming Yuan Zhang ◽  
Hong Yuan Gao ◽  
Yan Li ◽  
Hua Zhu Song ◽  
Wen Tao Peng

In recent years, more and more large-diameter and super-long steel pipe piles are widely used in bridge and port engineering. But so far, people know very little about their bearing characteristics and there is no suitable calculation method of their bearing capacity in the design specifications. In engineering design, computational theory of ordinary piles is referenced. We all know that carrying capacity of large-diameter and super-long steel pipe piles is very closely related to the surrounding soil stiffness, but we do not know how they influence each other. In the paper, the effect of soil stiffness on vertical bearing and settlement features are studied for large-diameter and super-long steel pipe pile based on the three-dimensional continuum medium fast lagrangian method (FLAC3D). The result shows that the settlement of pile top will be reduced and side friction resistance of large-diameter and super-long steel pipe pile can be increased effectively if the stiffness of soil around the piles become stronger under the unchanged load. But when the stiffness of soil exceeds a certain intensity, the rate of pile top settlement reducing decreases gradually. In other words, when the soil stiffness increases to a certain extent, continue to increase the stiffness of soil around piles can not effectively reduce the settlement of pile top. It is obvious that the stiffness of soil around pile has a direct impact on the pile settlement characteristics and bearing characteristics. The conclusion is of significance for the reasonable design of large-diameter and super-long steel pipe pile foundation in engineering applications.


Author(s):  
Sheng-Hua Xu ◽  
Zheng-Wu Li ◽  
Yong-Feng Deng ◽  
Xia Bian ◽  
Hong-Hu Zhu ◽  
...  

CERUCUK ◽  
2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Humaira Afrila ◽  
Markawie Markawie

Long Kali is a sub-district of Paser Tana Paser Regency Prov. East Kalimantan. In this sub-district have two village separate by a river, that is Perkuwen river, there is bridge has a broke. Whereas the village very needed a bridge because it is used as a transportation infrastructure for peoples and also passed by vehicles transporting oil palm yields . Therefore, the design of composite bridges made with spans 25 m and 7 m wide bridge.In this plan the analysis of Standard methods of loading refers to the bridge imposition For RSNI T-02-2005 about composite bridge structure design method, refers to RSNI T-03-2005 about Steel Structural Design For Bridge, SNI 03-1729-2002 about Steel Structures Planning Procedures and SNI 03-2847-2002 about Concrete Structures Calculation for Building.The result is used the main girder profile SH 950 x 400 x 16 x 32 and diaphragm WF 400 x 200 x 8 x 13. Vehicle floor plate thickness 20 cm using quality concrete  30 MPa and quality reinforcing steel reinforcement  360 MPa with subject dividers reinforcement D22- 100 and D12-100 mm. In using concrete pavement  30 MPa D22-100 mm staple reinforcement and shear reinforcement rebars quality D12-100 mm  360 MPa. Concrete abutment in the form  25 MPa at 2 m height and length of 8,5 m. Steel pipe pile foundations quality  25 MPa are 16 pieces with a length of 10 meters and a diameter of 0.4 m.Keyword: Bridge, composite, steel pipe pile.


Sign in / Sign up

Export Citation Format

Share Document