Queue Length Estimation of Intersection Traffic Flow Undera Connected Vehicles Environment

Author(s):  
Yumu Gu ◽  
Peiqun Lin ◽  
Jiahui Liu ◽  
Bin Ran ◽  
Jianmin Xu
2020 ◽  
Vol 10 (6) ◽  
pp. 2078 ◽  
Author(s):  
Kai Gao ◽  
Shuo Huang ◽  
Farong Han ◽  
Shuo Li ◽  
Wenguang Wu ◽  
...  

Nowadays, traffic infrastructures and vehicles are connected through the network benefiting from the development of Internet of Things (IoT). Connected automated cars can provide some useful traffic information. An architecture and algorithm of mobile service computing are proposed for traffic state sensing by integration between IoT and transport system models (TSMs). The formation process of queue at this intersection is analyzed based on the state information of connected vehicles and the velocity of shockwave is calculated to predict queue length. The computing results can be delivered to the traffic information edge server. However, not all the vehicles are capable of connecting to the network and will affect the queue length estimation accuracy. At the same time, traffic cameras transmit the traffic image to the edge server and a deep neuron network (DNN) is constructed on the edge server to tackle the traffic image. It can recognize and classify the vehicles in the image but takes several seconds to work with the complex DNN. At last, the final queue length is determined according to the weight of the two computing results. The integrated result is delivered to the traffic light controller and traffic monitoring center cloud. It reveals that the estimation from DNN can compensate the estimation from shockwave when the penetration rate of connected vehicles is low. A testbed is built based on VISSIM, and the evaluation results demonstrate the availability and accuracy of the integrated queue length estimation algorithm.


Author(s):  
Xiaowei Cao ◽  
Jian Jiao ◽  
Yunlong Zhang ◽  
Xiubin Wang

At intersections in which the left-turn bay does not have sufficient length or the left-turn volume is relatively high, left-turn vehicles may spill back and block the adjacent through traffic. This paper aims to develop quantitative measures of the left-turn spillback, and by using the results on spillback probability, develop a suitable signal control strategy. We first develop an improved queue length estimation method for vehicles in the left-turn bay based on Comert and Cetin’s general queue length estimation method with connected vehicles, after which we propose a probabilistic model to measure the left-turn spillback probability at an intersection in a connected environment. The model accuracy is validated with results from microscopic traffic simulation. The effect of bay length is also studied. In the end, a signal control demonstration is presented to show the efficiency of the proposed method in signal control.


Author(s):  
Guangchuan Yang ◽  
Rui Yue ◽  
Zong Tian ◽  
Hao Xu

An adequate queue storage length is critical for a metered on-ramp to prevent ramp queue spillback to the upstream signalized intersection. Previous research on queue length estimation or queue storage length design at metered ramps has not taken into account the potential impact of various on-ramp traffic flow arrival profiles on ramp queue lengths. This paper depicts the traffic flow arrival profiles and queue generation processes at three different metered ramp categories. Based on a large number of microscopic simulation runs, it is found that, under a given demand-to-capacity scenario, the queue at a metered ramp with two on-ramp feeding movements is more likely to be cleared in a cycle than at a metered ramp with three on-ramp feeding movements. Also, the platoon dispersion effect significantly reduces the ramp queue length, and hence the queue storage needs at a metered ramp. In addition, this paper reveals that ramp queue length tends to increase linearly with upstream signal cycle length. The design of queue storage length for a metered on-ramp hence needs to fully consider the various ramp configurations and upstream signal timing settings.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Zuping Cao ◽  
Lili Lu ◽  
Chen Chen ◽  
Xu Chen

Author(s):  
Juyuan Yin ◽  
Jian Sun ◽  
Keshuang Tang

Queue length estimation is of great importance for signal performance measures and signal optimization. With the development of connected vehicle technology and mobile internet technology, using mobile sensor data instead of fixed detector data to estimate queue length has become a significant research topic. This study proposes a queue length estimation method using low-penetration mobile sensor data as the only input. The proposed method is based on the combination of Kalman Filtering and shockwave theory. The critical points are identified from raw spatiotemporal points and allocated to different cycles for subsequent estimation. To apply the Kalman Filter, a state-space model with two state variables and the system noise determined by queue-forming acceleration is established, which can characterize the stochastic property of queue forming. The Kalman Filter with joining points as measurement input recursively estimates real-time queue lengths; on the other hand, queue-discharging waves are estimated with a line fitted to leaving points. By calculating the crossing point of the queue-forming wave and the queue-discharging wave of a cycle, the maximum queue length is also estimated. A case study with DiDi mobile sensor data and ground truth maximum queue lengths at Huanggang-Fuzhong intersection, Shenzhen, China, shows that the mean absolute percentage error is only 11.2%. Moreover, the sensitivity analysis shows that the proposed estimation method achieves much better performance than the classical linear regression method, especially in extremely low penetration rates.


Sign in / Sign up

Export Citation Format

Share Document