Decreasing the Economic Vulnerability of the Built Environment throughout the Disaster Recovery Processes: An Agent Based Model Framework

Author(s):  
Mohamed Eid ◽  
Islam El-Adaway
2016 ◽  
Vol 75 (sp1) ◽  
pp. 1082-1086
Author(s):  
Juan L. Garzon ◽  
Celso Ferreira ◽  
Robert A. Dalrymple ◽  
Seth D. Guikema

2021 ◽  
Author(s):  
Chen Chen ◽  
Charles Koll ◽  
Haizhong Wang ◽  
Michael Lindell

Abstract. Previous tsunami evacuation simulations have mostly been based on arbitrary assumptions or inputs adapted from non-emergency situations, but a few studies have used empirical behavior data. This study bridges this gap by integrating empirical decision data from local evacuation expectations surveys and evacuation drills into an agent-based model of evacuation behavior for a Cascadia Subduction Zone community. The model also considers the impacts of liquefaction and landslides from the earthquake on tsunami evacuation. Furthermore, we integrate the slope-speed component from Least-cost-distance to build the simulation model that better represents the complex nature of evacuations. The simulation results indicate that milling time and evacuation participation rate have significant non-linear impacts on tsunami mortality estimates. When people walk faster than 1 m/s, evacuation by foot is more effective because it avoids traffic congestion when driving. We also find that evacuation results are more sensitive to walking speed, milling time, evacuation participation, and choosing the closest safe location than to other behavioral variables. Minimum tsunami mortality results from maximizing the evacuation participation rate, minimizing milling time, and choosing the closest safe destination outside of the inundation zone. This study's comparison of the agent-based model and BtW model finds consistency between the two models' results. By integrating the natural system, built environment, and social system, this interdisciplinary model incorporates substantial aspects of the real world into the multi-hazard agent-based platform. This model provides a unique opportunity for local authorities to prioritize their resources for hazard education, community disaster preparedness, and resilience plans.


2001 ◽  
Author(s):  
Minoru Tabata ◽  
Akira Ide ◽  
Nobuoki Eshima ◽  
Kyushu Takagi ◽  
Yasuhiro Takei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document