Evaluation of Pedestrian Gap Acceptance Behavior at Uncontrolled Midblock Sections under Mixed Traffic Condition

Author(s):  
M. Paul ◽  
P. Rajbongshi ◽  
I. Ghosh
2019 ◽  
Vol 5 (2) ◽  
Author(s):  
S. Salini ◽  
R. Ashalatha ◽  
S. Aswathy Mohan

Author(s):  
Sabyasachi Biswas ◽  
Souvik Chakraborty ◽  
Indrajit Ghosh ◽  
Satish Chandra

Saturation flow is one of the most important functional parameters at signalized intersections. It is to be noted that saturation flow is a functional measure of the intersection operation, which indicates the probable capacity if working in an ideal situation. However, determination of the saturation flow is a challenging task in developing countries like India where vehicles with diverse static and dynamic characteristics use the same carriageway. At the same time, it is influenced by several other factors. In this context, the present research is carried out to examine the effects of traffic composition, approach width and right-turning movements on saturation flow under heterogeneous traffic conditions. This paper proposes a model for computing saturation flow at the signalized intersection under mixed traffic condition based on Kriging approach. A detailed comparison of the mean saturation flow values obtained by the conventional method, regression method, and Kriging method has also been presented. Low mean absolute percentage error values (<5%) have been obtained for saturation flow by Kriging method with respect to the conventional method. Finally, the proposed models are used to evaluate the impact of right-turning vehicles on saturation flow under shared lane condition.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Mudasser Seraj ◽  
Jiangchen Li ◽  
Tony Z. Qiu

Microscopic modeling of mixed traffic (i.e., automaton-driven vehicles and human-driven vehicles) dynamics, particularly car-following, lane-changing, and gap-acceptance, provides the opportunity to gain a more accurate estimation of flow-density relationships for both traditional traffic with human-driven vehicles and different mixed traffic scenarios. Our paper proposes a microscopic framework to model multilane traffic for both vehicle types on shared roadways which sets the stage to explore the capability of macroscopic car-following models in general to explain the fundamental flow-density relationship. Since prior models inadequately represent the fundamental diagram realistically, we propose a rectified macroscopic flow model that can account for the impact of both lane-changing and gap-acceptance. Differentiability, boundary conditions, and flexibility of the proposed model are tested to validate its applicability. Finally, the capability to interpret the flow-density relationship by the proposed model is verified for different mixed traffic scenarios. Although few model parameter values were obtained directly from the simulation input, the rest of the parameters have been calibrated by flow and density outputs from the simulations. The analysis results show a distinct correlation between the proposed model parameters with automation-driven vehicle shares and lane-changing rates of traffic. The findings from this study emphasize the importance of taking complete motion dynamics into account, rather than partial motion dynamics (i.e., car-following) as has been the case in the previous studies, to explain macroscopic traffic flow characteristics, irrespective of the vehicle type.


Sign in / Sign up

Export Citation Format

Share Document