saturation flow
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 59)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Vol 20 (6) ◽  
pp. 506-513
Author(s):  
A. V. Zedgenizov ◽  
D. V. Kapskiy ◽  
R. Yu. Lagerev

The paper discusses problems of assessing the impact of mass attraction centers on the adjacent street and road network in the process of their functioning, expansion or conversion. The choice of criteria for assessing the organization of traffic flow, given in the Russian and foreign literature, has been substantiated, in particular, it is proposed to use v/c ratio for adjacent junction and corresponding level of traffic service (LOS). The main models for estimating capacity of signalized intersections are presented. The procedures of forming a mathematical model for estimating the load factor of signalized intersections is shown. The concepts of lane group capacity, total lost time per cycle, phase coefficients, saturation flow rate, and coefficients taking into account the decrease in the ideal saturation flow rate are explained. A mathematical model for estimating transport demand is presented, which allows to calculate the intensity of traffic flow to and from the center of mass attraction on the basis of the total traffic flow of correspondence, share of visitors in individual transport, average filling of individual transport, and coefficient of daily irregularity upon arrival and departure of visitors on an individual transport. An integrated mathematical model of loaf factor is proposed which includes parameters for estimating transport demand for centers of mass embarrassment and parameters that determine the signalized intersections capacity. The uniqueness of the integrated model is that it simultaneously involves parameters reflecting the demand and capacity of loading intersection. Recommendations are made on assessing the level of traffic service flows and the v/s ratio, based on the data of transport demand and capacity, adjacent to the centers of mass attraction of the road network. The presented method of estimating the LOS based on the capacity of the signalized intersections allows us to estimate the influence degree of mass attraction centers on the adjacent urban road network.


2021 ◽  
Vol 40 (2) ◽  
pp. 191-198
Author(s):  
I.N. Usanga ◽  
R.K. Etim

This study involves understanding the effect of tricycles on saturation flow rate at signalized intersections. The goal is to show that intersection dominated by tricycle experience congestion especially at peak periods (morning and evening). This was done by collecting vehicular traffic data, signal timing and geometric data from five (5) signalized intersections at ten (10) cycles. The period covered October, 2015 to June, 2016 for four working days of the week (Mondays, Tuesdays, Wednesdays, and Fridays), between the hours of 7:30 am–9:30 am and 4:30 pm– 6:30 pm. The duration of data collected covered both rainy and dry seasons. Average vehicular departure time during green time was determined and saturation flow obtained through field measurement by the ratio of average vehicular departure time to green time. Highway Capacity Manual method was also used to obtain saturation flow at each study approach. Saturation flow obtained through field measurement and Highway Capacity Manual were compared using independent t-test having t-value of 4.239 and P-value of 0.000 at 20 degree of freedom were obtained. The analysis indicated that P-value is less than 0.05, hence the mean of Highway Capacity Manual 2000 Model (5918.60) was significantly higher than the field measurement (4687.50). The result indicated that the increasing rate of tricycle with non-lane discipline causes congestion at signalized intersection. The findings suggest that the widely used Highway Capacity Manual is not appropriate for determining saturation flow for a mixed traffic with increasing rate of tricycle coupled with non-lane discipline traffic condition. From the analysis, it is recommended that Government should give priority to use of buses as a means of mass transit system so that it can accommodate more commuters than tricycle.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256620
Author(s):  
Sugiarto Sugiarto ◽  
Fadhlullah Apriandy ◽  
Yusria Darma ◽  
Sofyan M. Saleh ◽  
Muhammad Rusdi ◽  
...  

Pretimed signalized intersection is known as a common source of congestion, especially in urban heterogeneous traffic. Furthermore, the accuracy of saturation flow rate is found to cause efficient and vital capacity estimation, in order to ensure optimal design and operation of the signal timings. Presently, the traffic also consists of diverse vehicle presence, each with its own static and dynamic characteristics. The passenger car equivalent (PCE) in an essential unit is also used to measure heterogenous traffic into the PCU (Passenger Car Unit). Based on the collection of observed data at three targets in Banda Aceh City, this study aims to redetermine the PCEs by using Bayesian linear regression, through the Random-walk Metropolis-Hastings and Gibbs sampling. The result showed that the obtained PCE values were 0.24, 1.0, and 0.80 for motorcycle (MC), passenger car (PC), and motorized rickshaw (MR), respectively. It also showed that a significant deviation was found between new and IHCM PCEs, as the source of error was partially due to the vehicle compositions. The present traffic characteristics were also substantially different from the prevailing conditions of IHCM 1997. Therefore, the proposed PCEs enhanced the accuracy of base saturation flow prediction, provided support for traffic operation design, alleviated congestion, and reduced delay within the city, which in turn improved the estimation of signalized intersection capacity.


Author(s):  
Pinakin N. Patel ◽  
Ashish Dhamaniya

This study proposes a time occupancy approach to estimate passenger car units (PCUs) at urban signalized intersections with different interaction levels between vehicles under saturated green time conditions. The study shows a variation in PCUs with varied traffic and geometric conditions. Traffic data have been collected through videography techniques at signalized intersections in three metropolitan cities in India. Traffic flow discharge and clearance time of different vehicular categories have been extracted from the video during the saturated green time. The observed ranges of dynamic PCU values for two-wheelers, three-wheelers, big cars, light commercial vehicles, and heavy vehicles are 0.12 to 0.32, 0.45 to 0.80, 1.40 to 1.80, 1.60 to 2.20, and 3.50 to 6.50, respectively. Regression-based PCU models have been developed for each vehicle category to address the variation of individual vehicle PCUs with traffic compositions and flow rates. The model analysis shows that traffic compositions and flow rates are significantly affecting the PCU values. The PCU is a complex parameter requiring several field attributes. Therefore, to overcome the complexity of estimating PCUs, a concept of flow equivalency factor (FEF) has been proposed based on the estimated PCUs. The FEF can directly convert the mixed motorized vehicular flow into an equivalent standard passenger car flow without actually making use of different vehicles’ PCU factors. All the developed models have been validated for field conditions and results are found promising with field data. The developed approach can be used effectively for developing countries with a mixed traffic stream.


Author(s):  
A. M. Tahsin Emtenan ◽  
Christopher M. Day

During oversaturated conditions, common objectives of signal timing are to maximize vehicle throughput and manage queues. A common response to increases in vehicle volumes is to increase the cycle length. Because the clearance intervals are displayed less frequently with longer cycle lengths and fewer cycles, more of the total time is used for green indications, which implies that the signal timing is more efficient. However, previous studies have shown that throughput reaches a peak at a moderate cycle length and extending the cycle length beyond this actually decreases the total throughput. Part of the reason for this is that spillback caused by the turning traffic may cause starvation of the through lanes resulting in a reduction of the saturation flow rate within each lane. Gaps created by the turning traffic after a lane change may also reduce the saturation flow rate. There is a relationship between the proportions of turning traffic, the storage length of turning lanes, and the total throughput that can be achieved on an approach for a given cycle length and green time. This study seeks to explore this relationship to yield better signal timing strategies for oversaturated operations. A microsimulation model of an oversaturated left-turn movement with varying storage lengths and turning proportions is used to determine these relationships and establish a mathematical model of throughput as a function of the duration of green, storage length, and turning proportion. The model outcomes are compared against real-world data.


2021 ◽  
pp. 64-78
Author(s):  
Nataliia Semchenko ◽  
Olha Kholodova ◽  
Maryna Buhaiova

Problem. The capacity of signalized intersections is determined using the concept of "saturation flow". It is the main characteristic in the process of their analysis, design and calculation. The work is devoted to solving the scientific-applied problem of increasing the efficiency of the signalized intersection at one level by choosing a rational method of determining saturation flows for these characteristics of traffic flows, geometric parameters of the intersection and infrastructure in its area. The subject of the study is the influence of the main characteristics of the traffic flow, parameters and infrastructure of the intersection on the saturation flow value. Goal. The aim of the work is the analysis of the influence of the main characteristics of the traffic flow, parameters and infrastructure of the intersection on the saturation flow value. Methodology. The calculation of the control regime at the intersection is based on determining the relation between the traffic intensity of vehicles at the intersection and the saturation flow value, which changes under the influence of a number of factors. Analytical calculation of the saturation flow value is based on using of correction factors that take into account the influence of these factors. Results. The methods of determination of saturation flows are analyzed out in the work; performed a comparative analysis of the definition of ideal saturation flows by different methods; a comparative analysis of the determination of the saturation flow correction coefficients for the parameters that have an effect on it were performed; the estimation of discrepancy at calculations of coefficients of correction of saturation flows by various methods is done; the list of coefficients which need to be considered at definition of their influence on a saturation flow is refined. Originality. In oppose to classical and other approaches to determining the saturation flow, the method recommended by the American "Highway Capacity Manual" takes into account more parameters of influence. It is proposed to use this method for the saturation flow calculation, but with an updated list of coefficients that must be taken into account in the calculations. Practical value. The results of the work can be used in the practice of improving the efficiency of signalized intersections in sections of the urban road network, as well as in further research on this topic.


2021 ◽  
Author(s):  
Dmitri Martiakhin ◽  
Tatiana Komarova ◽  
Dmitri Nemchinov ◽  
Alexandr Mikhailov

The article presents the results of a study of the intersections capacity, at which the U-turn lane is organized, depending on the traffic flow volume and its organization. Signalized intersection capacity depends on traffic flow, geometry, traffic organization type, driver’s behaviour and headways between drivers in each traffic lane. To analyse signalized intersection capacity it is necessary to determine traffic lanes saturation flow. The study presents field observation analyses of headways between drivers and saturation flow on U-turn lanes at signalised intersections in Moscow. To conduct research and identify patterns, intersections in Moscow were chosen with different conditions and different organization of the U-turns.


Author(s):  
Boris Claros ◽  
Madhav Chitturi ◽  
Andrea Bill ◽  
David A. Noyce

Critical and follow-up headways are the foundation for estimating the saturation flow of permissive left-turns at signalized intersections. Current critical and follow-up headways recommended in the 2016 Highway Capacity Manual (HCM) are based on limited data collected from five intersections in Texas in the 1970s. This study analyzed over 2,500 left-turning vehicles at 45 intersection approaches, provides insights into gap acceptance parameters, and evaluates the effect of different site-specific factors. Video data were collected and processed from different geographical regions in the United States—Arizona, Florida, North Carolina, Virginia, and Wisconsin. Using the maximum likelihood method to estimate gap acceptance parameters, the mean critical headway was 4.87 s and the mean follow-up headway was 2.73 s. To account for site-specific characteristics, the effect of several geometric and operational variables on critical and follow-up headway were explored. Through a meta-regression analysis, the posted speed limit and width of opposing travel lanes were found to have a significant effect on gap acceptance parameters. Results showed that with decreasing posted speed limit and width of opposing lanes, critical and follow-up headways also decreased, resulting in greater saturation flows. When site-specific saturation flow estimates were compared with HCM saturation flow estimates, the differences ranged from −30% to +23%. This paper quantifies and illustrates the impact of site-specific characteristics on gap acceptance parameters and saturation flow.


Sign in / Sign up

Export Citation Format

Share Document