Artificial Beach Nourishment on the German North Sea Coast

Author(s):  
Johann Kramer
2011 ◽  
Vol 1 (32) ◽  
pp. 101
Author(s):  
Holger Toxvig Madsen ◽  
Soeren Bjerre Knudsen ◽  
Per Soerensen

The overall coastline management strategy for the central section of the Danish North Sea coast is to halt the process of coastal retreat and maintain a certain safety level against flooding. The sudden erosion of 10-25 m of a dune during a storm or a gale is thus a cause for concern. Such local dune erosion is often observed where an inward coastline undulation is situated off a section of the coast where the dune is not in equilibrium with the rest of the profile. During a storm this latent dune erosion is then released. By analysing the migration of coastline undulations and detecting the profiles with latent dune erosion the expectation is that the majority of large-scale dune erosion can be foreseen and avoided by adaptation of the nourishment programme.


1972 ◽  
Vol 1 (13) ◽  
pp. 77
Author(s):  
Johann Kramer

Several artificial beach nourishments were completed during the last twenty years on the German North Sea coast. Investigations made it possible to settle different problems connected with artificial beach nourishment and to gain additional information and experience. At present beach nourishments at Langeoog and Sylt will be realized in a way which is expected to bring the highest effectiveness. The hydrodynamic processes in connection with these beach nourishments and their change in shape will be subject to the paper.


2021 ◽  
Author(s):  
Elin Andrée ◽  
Jian Su ◽  
Martin Drews ◽  
Morten Andreas Dahl Larsen ◽  
Asger Bendix Hansen ◽  
...  

<p>The potential impacts of extreme sea level events are becoming more apparent to the public and policy makers alike. As the magnitude of these events are expected to increase due to climate change, and increased coastal urbanization results in ever increasing stakes in the coastal zones, the need for risk assessments is growing too.</p><p>The physical conditions that generate extreme sea levels are highly dependent on site specific conditions, such as bathymetry, tidal regime, wind fetch and the shape of the coastline. For a low-lying country like Denmark, which consists of a peninsula and islands that partition off the semi-enclosed Baltic Sea from the North Sea, a better understanding of how the local sea level responds to wind forcing is urgently called for.</p><p>We here present a map for Denmark that shows the most efficient wind directions for generating extreme sea levels, for a total of 70 locations distributed all over the country’s coastlines. The maps are produced by conducting simulations with a high resolution, 3D-ocean model, which is used for operational storm surge modelling at the Danish Meteorological Institute. We force the model with idealized wind fields that maintain a fixed wind speed and wind direction over the entire model domain. Simulations are conducted for one wind speed and one wind direction at a time, generating ensembles of a set of wind directions for a fixed wind speed, as well as a set of wind speeds for a fixed wind direction, respectively.</p><p>For each wind direction, we find that the maximum water level at a given location increases linearly with the wind speed, and the slope values show clear spatial patterns, for example distinguishing the Danish southern North Sea coast from the central or northern North Sea Coast. The slope values are highest along the southwestern North Sea coast, where the passage of North Atlantic low pressure systems over the shallow North Sea, as well as the large tidal range, result in a much larger range of variability than in the more sheltered Inner Danish Waters. However, in our simulations the large fetch of the Baltic Sea, in combination with the funneling effect of the Danish Straits, result in almost as high water levels as along the North Sea coast.</p><p>Although the wind forcing is completely synthetic with no spatial and temporal structure of a real storm, this idealized approach allows us to systematically investigate the sea level response at the boundaries of what is physically plausible. We evaluate the results from these simulations by comparison to peak water levels from a 58 year long, high resolution ocean hindcast, with promising agreement.</p>


The following list has been classified, so far as practicable, according to subjects, in order that it may be useful for purposes of reference. The list does not include publications recording the results of observations made on material supplied by the Association to workers in different parts of the country, of which a considerable amount is sent out each year.


2011 ◽  
Vol 1 (6) ◽  
pp. 6
Author(s):  
C. Ringe-Jorgensen

With reference to the use of high-water frequency curves, which have been suggested by Wemelsfelder as an aid to fix the maximum flooding level, an attempt will be made in the following to estimate how far certain special geographical and meteorological conditions may be expected to influence the shape of the frequency curves for different localities. The investigation concerns a particular point on the Danish North Sea coast compared with the Dutch coast, but its principles may possibly be of interest in a wider sense.


1994 ◽  
Vol 52 (2) ◽  
pp. 220-225 ◽  
Author(s):  
E. Denker ◽  
P. H. Becker ◽  
M. Beyerbach ◽  
A. Büthe ◽  
W. A. Heidmann ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document