hydrodynamic processes
Recently Published Documents


TOTAL DOCUMENTS

347
(FIVE YEARS 123)

H-INDEX

24
(FIVE YEARS 4)

Author(s):  
R.R. Gumerova

The article examines the reasons for the formation of vertical hydrochemical inversion within particular oil and gas basins and points out the role of waters of different genesis in the development of this phenomenon. The following processes of reverse hydrochemical zoning in the sedimentary cover are analyzed: thickening of heavy clay strata and the related squeezing of loosely bound waters, dehydration of clay minerals and catagenic fluid generation accompanying the transformation of organic matter into hydrocarbons of the petroleum series. The hydrochemical inversion at great depths is noted to occur and persist in the environment of the passive hydrodynamic regime; in closed water-drive systems, the demineralization of waters with depth causes the decrease in the hydrodynamic potential gradient, determining the migration pattern not only of water but also of hydrocarbons and, consequently, the location of oil and gas accumulation zones.


2021 ◽  
Vol 6 (4) ◽  
pp. 63-71
Author(s):  
Arestak Sarukhanyan ◽  
◽  
Garnik Vermishyan ◽  

Introduction: This paper studies the frequency with which hydrodynamic parameters change in the sudden expansion section of axisymmetric pressure flow, based on the boundary layer equations. Methods: The suggested method reveals the regularity of changes in the hydrodynamic parameters of the flow in the transitional area, making it possible to obtain a velocity profile in any cross-section under common initial and boundary conditions. Based on the general solutions, we studied the hydrodynamic processes occurring in the transitional area of the effective sudden cross-section expansion within the axisymmetric pressure movement, in the following cases: a) when the velocity is constant at any point of the inlet face; b) when the velocity is distributed along the inlet face according to the parabolic law. Our calculations were carried out for different values of the expansion factor. Results: Based on the results of the computer-aided experimental study, we obtained velocity diagrams along the length of the transitional area with constant and parabolic velocity distributions for fluid inflowing into the expanded section. We also determined the patterns of pressure distribution along the length of the relevant section.


Author(s):  
Vitaliy Zhmakin ◽  
Victor Budnikov

This article discusses the problems of transmission of liquefied natural gas through a non-pressure pipeline from a stationary storage facility to a transport cryogenic tank and ways to solve them. Theoretical studies have been carried out, including mathematical modeling of thermal and hydrodynamic processes during the transmission of liquefied natural gas through a pipeline by a non-pressure method.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012103
Author(s):  
A F Serov ◽  
V N Mamonov ◽  
A D Nazarov ◽  
N B Miskiv

Abstract This work investigates the flow structure in the gaps of a multi-cylinder circular Couette-Taylor system, which is a model of a two-rotor heat generator. The initial information for studying the flow structure was data on the magnitude of the resistance torque to rotors opposed rotation, as well as on the nature of the amplitude-frequency spectrum of pulsations of this torque, depending on the viscosity of the working fluid and the rotational speed of the heat generator rotors. The obtained data allow comparing the nature of hydrodynamic processes in the single and obtained multi-gap circular space of Couette-Taylor and calculating the parameters of structural formations in the multi-gap working space of the heat generator. At relative rotational speeds of rotors (3-50) rad/s, the main energy of flow pulsations (up to 90%) is found in the amplitude-frequency spectra in the frequency range (12-70) Hz. It is associated with vortices first described by Taylor, which are extended low-frequency regularly alternating spirals and vortex structures with right and left rotation in the region of higher frequencies (200– 500) Hz; their frequency is determined by the width of the annular gaps of the multi-cylinder system.


2021 ◽  
Vol 20 (3) ◽  
pp. 138-151
Author(s):  
N. V. Sokolov ◽  
M. B. Khadiev ◽  
P. E. Fedotov ◽  
E. M. Fedotov

The article presents the basic principles of three-dimensional mathematical modeling of the operation of a thrust plain bearing with fixed pads of the compressor. The model is based on the periodic thermoelastichydrodynamic (PTEHD) theory which allows calculating the temperature at the inlet to the pad and considering the complete thermal pattern. A description of the main provisions of the numerical implementation is given. In the stationary mode of the bearings operation, using the Sm2Px3Tx program, numerical experiments were carried out aimed at studying different boundary conditions to the Reynolds equation, the physics of the hydrodynamic process in the lubricating and boundary films of the bearing and the heat propagation in the body of the pad and thrust collar.


2021 ◽  
Vol 462 ◽  
pp. 109792
Author(s):  
Lu Yang ◽  
Jingming Hou ◽  
Long Cheng ◽  
Pang Wang ◽  
Zhanpeng Pan ◽  
...  

2021 ◽  
Author(s):  
Pierre Henry ◽  
Sinan Özeren ◽  
Nurettin Yakupoğlu ◽  
Ziyadin Çakir ◽  
Emmanuel de Saint-Léger ◽  
...  

Abstract. Earthquake-induced submarine slope destabilization is known to cause debris flows and turbidity currents, but the hydrodynamic processes associated with these events remain poorly understood. Records are scarce and this notably limits our ability to interpret marine paleoseismological sedimentary records. An instrumented frame comprising a pressure recorder and a Doppler recording current meter deployed at the seafloor in the Sea of Marmara Central Basin recorded consequences of a MW = 5.8 earthquake occurring Sept 26, 2019 and of a Mw = 4.7 foreshock two days before. The smaller event caused sediment resuspension but no strong current. The larger event triggered a complex response involving a mud flow and turbidity currents with variable velocities and orientations, which may result from multiple slope failures. A long delay of 10 hours is observed between the earthquake and the passing of the strongest turbidity current. The distance travelled by the sediment particles during the event is estimated to several kilometres, which could account for a local deposit on a sediment fan at the outlet of a canyon, but not for the covering of the whole basin floor. We show that after a moderate earthquake, delayed turbidity current initiation may occur, possibly by ignition of a cloud of resuspended sediment. Some caution is thus required when tying seismoturbidites with earthquakes of historical importance. However, the horizontal extent of the deposits should remain indicative of the size of the earthquake.


Sign in / Sign up

Export Citation Format

Share Document