Coastal Pollution from Septic Tank Drainfields

1982 ◽  
Vol 108 (6) ◽  
pp. 1265-1279 ◽  
Author(s):  
Alfred M. Duda ◽  
Kenneth D. Cromartie
Waterlines ◽  
1983 ◽  
Vol 2 (1) ◽  
pp. 22-23
Author(s):  
Gyan Sagar
Keyword(s):  

2014 ◽  
Vol 13 (3) ◽  
pp. 743-750
Author(s):  
Ala Kirjanova ◽  
Mindaugas Rimeika ◽  
Regimantas Dauknys
Keyword(s):  

1975 ◽  
Vol 10 (1) ◽  
pp. 214-223
Author(s):  
N.S. Wei ◽  
G.W. Heinke

Abstract This paper presents bench scale experimental results on the electrolysis of raw domestic wastewater. Studies carried out with consumable electrodes are discussed. A mathematical model of a small electrolytic sewage treatment unit for individual household application is developed. The energy consumption and cost of such a device are discussed. Electrolysis can be described as a process in which chemical reactions are induced at each electro-liquid interface by applying an external electrical energy source to a system of electrodes immersed in a liquid. This paper deals only with electrolysis where a direct current power supply is used as the energy source. The process is governed by Faraday' s two laws on electrochemistry. The fundamental process parameter is the electrical charge density, measured as coulombs per litre (c/1) of wastewater treated. There are two basic types of electrolysis depending on the choice of anode material. When the anode is made of dissolvable metallic material such as iron, stainless steel and aluminum, the metal dissolves and goes into the sewage as metallic ions and forms hydrated metallic oxides which act as flocculating agents. The amount of metal dissolved is proportional to the quantity of electrical charges supplied to the system. Results from a series of batch experiments showed that electrolysis with consumable electrodes is capable of removing significant amounts of organic pollutants. Total organic carbon (TOC) removal was found to be a function of charge density. Phosphate removal efficiency of 90 percent or higher was achieved at a relatively low charge density of 240 coulombs per litre with either iron or stainless steel anodes. A mathematical model was derived in the conceptual design of a household electrolytic treatment unit. The model incorporates variables such as decomposition voltage of the electrodes and electrical conductivity of the wastewater as well as the physical configuration of the electrolytic cell. The energy requirement of such a unit can be calculated from the model. It is suggested in this paper that an electrolytic waste treatment unit could be an alternative to the septic tank and tile bed system in areas where the latter is not applicable due to poor soil and terrain conditions.


1994 ◽  
Vol 29 (12) ◽  
pp. 23-29 ◽  
Author(s):  
G. Voigtländer ◽  
E.-P. Kulle

The paper presents a small sewage treatment plant (package plant) operating without additional energy. Purification of sewage is achieved in a three-step process: sedimentation tank, anaerobic reactor and wastewater pond or aerobic reactor. The efficiency of the anaerobic reactor - in contrast to the efficiency of a common septic tank - is significantly increased by using fixed biomass systems. Further degradation of sewage compounds by adhering microorganisms occurs in pond or aerobic reactor. The bed for the aerobic biomass is made of a semipermeable plastic film and arranged in order to ensure simultaneous supply of oxygen. The three pilot plants are showing different results. The main aims of research i.e. lowering of operational costs, energy supply, minimizing of maintenance expenditure and cleaning work, reliability of degradation efficiency have been achieved so far for the anaerobic reactor.


1997 ◽  
Vol 35 (8) ◽  
pp. 145-152 ◽  
Author(s):  
T. Panswad ◽  
L. Komolmethee

This research was to determine the effects of hydraulic shock loads by intermittent feeding on the removal efficiency of a small prefabricated real-sized septic tank/anaerobic filter unit. Besides the ‘control’ 24-hour continuous runs the other twice a day feeding periods covered 16, 12 and 8 hours per day, with the tank's retention time varying from 22.5 to 90 hours. It was demonstrated that the variation of the hydraulic feeding patterns ranging from 24-hour continuous feed to 8 h per day intermittent feed did not affect the performance of the system much. The percentage of BOD reduction was decreased from 85 to 82 and 81 percent for the feed times of 24, 16 and 8 hours per day, respectively. The tank capacity played a relatively major role in determining the removal efficiency of the process. The efficiency of BOD and SS reduction dwindled from 82.2 to 68.9 and 56.0% with the corresponding reduction in tank sizes from 90 to 45 and 22.5 hours retention, respectively. In any event, the unit could not satisfactorily remove nutrients. A retention period of not less than 48 hours is recommended if the Thai effluent standards are to be met. Equations for predicting the BOD removal capability were also developed.


Sign in / Sign up

Export Citation Format

Share Document