Statistical Analysis of Live Load in Column Design

1972 ◽  
Vol 98 (8) ◽  
pp. 1803-1815
Author(s):  
Ross B. Corotis
Author(s):  
Andrei Belyi ◽  
Eduard Karapetov ◽  
Ekaterina Tsygankova

Objective: To analyze and cover the statistical data concerning the development and application of live load and relevant design standards by the example of Saint Petersburg bridge constructions. Methods: A comprehensive three-stage analysis of technical documentation on the operated reinforced concrete bridge constructions of the city was applied. Historical and technical review of norms and specifications of design, since the end of the 19th century was conducted. Systematization, statistical analysis and splitting into stages and groups were carried out. Results: The article presents the development of design standards and temporary loads of reinforced concrete highway bridges. The statistics is made on the basis of the depot of Saint Petersburg bridges. The latter is characterized by the increased esthetic, and difficult technical operation features. Classification of temporary loads on structures of Saint Petersburg since 1891 was carried out. The stages of occurrence and formation of circulating load norms were analyzed. A certain feature in regulation of requirements for urban bridges was singled out. Examples of the relevant objects were given. A number of conclusions concerning the evolution of design standards were made. Practical importance: Taking into account the specifi city of the large megalopolis, management of technical condition of bridge constructions in Saint Petersburg represents an extremely responsible and difficult task. Authentic, exact and relevant data on the history of design of facilities, circulating load (both design and current) is necessary for the solution of the task in question. Statistical analysis was carried out to apply operation of reinforced concrete bridge constructions in practice as the most mass transportation facilities of the city. From a practical point of view the data in question will make it possible to provide and support the set standard (design) levels of reliability, safety and durability of bridge constructions with a sufficient share of probability.


2017 ◽  
Vol 20 (6) ◽  
pp. 809-818
Author(s):  
Heeseong Kim ◽  
Ki Hyun Kim ◽  
Inyeol Paik

2012 ◽  
Vol 238 ◽  
pp. 572-575 ◽  
Author(s):  
Wen Feng Du ◽  
Zhi Fei Sun ◽  
Hui Zhang ◽  
Fu Dong Yu

This paper, based on the practical engineering of the steel structure of Henan Shangpin food Co. LTD, introduces the design of a light-weight steel structure with three-span gabled frames, and discusses the solution of the large suspended loads. By taking the steel quantity as the target, the depth calculations and statistical analysis of the reasonable value of the column spacing were carried out. The results show that the large suspended loads should be imposed in the form of live load. When the column spacing is about 8m, the steel quantity is the lowest.


1966 ◽  
Vol 24 ◽  
pp. 188-189
Author(s):  
T. J. Deeming

If we make a set of measurements, such as narrow-band or multicolour photo-electric measurements, which are designed to improve a scheme of classification, and in particular if they are designed to extend the number of dimensions of classification, i.e. the number of classification parameters, then some important problems of analytical procedure arise. First, it is important not to reproduce the errors of the classification scheme which we are trying to improve. Second, when trying to extend the number of dimensions of classification we have little or nothing with which to test the validity of the new parameters.Problems similar to these have occurred in other areas of scientific research (notably psychology and education) and the branch of Statistics called Multivariate Analysis has been developed to deal with them. The techniques of this subject are largely unknown to astronomers, but, if carefully applied, they should at the very least ensure that the astronomer gets the maximum amount of information out of his data and does not waste his time looking for information which is not there. More optimistically, these techniques are potentially capable of indicating the number of classification parameters necessary and giving specific formulas for computing them, as well as pinpointing those particular measurements which are most crucial for determining the classification parameters.


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Sign in / Sign up

Export Citation Format

Share Document