Measurement of fluid properties with a near-field acoustic sensor

1999 ◽  
Vol 75 (2) ◽  
pp. 295-297 ◽  
Author(s):  
R. Patois ◽  
P. Vairac ◽  
B. Cretin
Small ◽  
2020 ◽  
Vol 16 (28) ◽  
pp. 2000581 ◽  
Author(s):  
Wenyu Wang ◽  
Patrick N. Stipp ◽  
Karim Ouaras ◽  
Saeed Fathi ◽  
Yan Yan Shery Huang

1999 ◽  
Vol 105 (2) ◽  
pp. 1229-1229 ◽  
Author(s):  
Bernard Cretin ◽  
Pascal Vairac ◽  
Raphael Patois

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


Sign in / Sign up

Export Citation Format

Share Document