rheological measurements
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 93)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Diako Khodaei ◽  
Mohammad Nejatian ◽  
Hassan Ahmadi Gavlighi ◽  
Farhad Garavand ◽  
Ilaria Cacciotti

Abstract The seeds from bitter orange, a by-product from the juice making step, hold the potential to facilitate novel, easy yet high quality pectin extraction. To test this hypothesis, the pectin from orange seeds (OSP) were extracted by distilled water and its compositional parameters and rheological behavior then evaluated. Results showed that galacturonic acid was the major component of OSP (~ 425 mg/g) confirming the purity of extracted pectin, followed by glucose and some minor neutral sugars. Mw, Rn and, Rz for the OSP were 4511.8 (kDa), 61 (nm), and 61.1 (nm), respectively. Rheological measurements showed shear-thinning behavior for OSP that by increasing temperature from 5 to 45 oC, the viscosity of the gum decreased. Power law fitted as the best rheological model describing the flow behavior of OSP. Strain sweep dynamic rheological measurements confirmed an entangled network structure for OSP and the addition of NaCl to the gum dispersion, decreased the consistency coefficient from 35.6 to 23.18 Pa.sn, while the flow behavior index remained unchanged. These results demonstrate for the first time that the OSP can be used as a new source of pectin, with likely a wide range of applications in food industry.


2022 ◽  
Author(s):  
Svetlana Butylina ◽  
Krista Koljonen ◽  
Salla Hiltunen ◽  
Katri Laatikainen

Abstract Valorisation of bio-based materials derived from agricultural and industrial side-streams or waste-streams is a basis of circular economy. However, the success of it depends on the full understanding of materials and finding their optimal way of processing. Barley husk is a side-stream waste material derived from the starch and ethanol production. This study is focused on the processability of the arabinoxylan extracted from barley husk using the electrospinning technique to produce thin xylan-poly(vinyl alcohol) fibers. As a comparison, lignin-free xylan of beech wood was used. The properties of spinning solutions and resulting nanofibrous mats were assessed by using rheological measurements, FTIR spectroscopy, scanning electron microscopy and contact angle measurements. It was found that solubility plays a crucial role in the spinnability of xylan extracts. Decrease in viscosity of arabinoxylan achieved by decreasing its concentration was found to improve the jet stability but at the same time, to reduce the diameter of spun fibre. Hydrophilicity of nanofibrous mats were strongly affected by the type of xylan and solvent used.


2022 ◽  
Vol 13 (1) ◽  
pp. 5
Author(s):  
Antonino Cataldo ◽  
Matteo La Pietra ◽  
Leonardo Zappelli ◽  
Davide Mencarelli ◽  
Luca Pierantoni ◽  
...  

As part of a biopolymer matrix, pectin was investigated to obtain an engineered jam, due to its biodegradability. Only a few examples of pectin-based nanocomposites are present in the literature, and even fewer such bionanocomposites utilize nanocarbon as a filler—mostly for use in food packaging. In the present paper, ecofriendly nanocomposites made from household reagents and displaying multiple properties are presented. In particular, the electrical behavior and viscoelastic properties of a commercial jam were modulated by loading the jam with carbon nanotubes and graphene nanoplates. A new nanocomposite class based on commercial jam was studied, estimating the percolation threshold for each filler. The electrical characterization and the rheological measurements suggest that the behavior above the percolation threshold is influenced by the different morphology—i.e., one-dimensional or two-dimensional—of the fillers. These outcomes encourage further studies on the use of household materials in producing advanced and innovative materials, in order to reduce the environmental impact of new technologies, without giving up advanced devices endowed with different physical properties.


Author(s):  
Negar Abbasi Aval ◽  
Rahmatollah Emadi ◽  
Ali Valiani ◽  
Mahshid Kharaziha ◽  
Anna Finne-Wistrand

AbstractCentral nervous system (CNS) injuries such as stroke or trauma can lead to long-lasting disability, and there is no currently accepted treatment to regenerate functional CNS tissue after injury. Hydrogels can mimic the neural extracellular matrix by providing a suitable 3D structure and mechanical properties and have shown great promise in CNS tissue regeneration. Here we present successful synthesis of a thermosensitive hyaluronic acid-RADA 16 (Puramatrix™) peptide interpenetrating network (IPN) that can be applied in situ by injection.Thermosensitive hyaluronic acid (HA) was first synthesized by combining HA with poly(N-isopropylacrylamide). Then, the Puramatrix™ self-assembled peptide was combined with the thermosensitive HA to produce a series of injectable thermoresponsive IPNs. The HA-Puramatrix™ IPNs formed hydrogels successfully at physiological temperature. Characterization by SEM, rheological measurements, enzymatic degradation and swelling tests was performed to select the IPN optimized for neurologic use. SEM images of the optimized dry IPNs demonstrated an aligned porous structure, and the rheological measurements showed that the hydrogels were elastic, with an elastic modulus of approximately 500 Pa, similar to that of brain tissue. An evaluation of the cell–material interactions also showed that the IPN had biological characteristics required for tissue engineering, strongly suggesting that the IPN hydrogel possessed properties beneficial for regeneration of brain tissue.


2022 ◽  
Author(s):  
Jason C Andrechak ◽  
Lawrence J Dooling ◽  
Brandon H Hayes ◽  
Siddhant Kadu ◽  
William Zhang ◽  
...  

Macrophages are abundant in solid tumours and typically associate with poor prognosis, but macrophage clusters in tumour nests have also been reported as beneficial even though dispersed macrophages would have more contacts with cancer cells. Here, by maximizing both phagocytic activity and macrophage numbers, we discover cooperative phagocytosis by low entropy clusters in rapidly growing engineered immuno-tumouroids. The results fit the calculus of proliferation-versus-engulfment, and rheological measurements and molecular perturbations provide a basis for understanding phagocytic disruption of a tumour's cohesive forces in soft cellular phases. The perturbations underscore the utility of suppressing a macrophage checkpoint in combination with an otherwise ineffective tumour-opsonizing monoclonal antibody, and the approach translates in vivo to tumour elimination that durably protects mice from re-challenge and metastasis. Adoptive transfer of engineered macrophages increases the fraction of mice that eliminate tumours and potentially overcomes checkpoint blockade challenges in solid tumours like insufficient permeation of blocking antibodies and on-target, off-tumour binding. Finally, anti-cancer IgG induced in vivo are tumour-specific but multi-epitope and contribute to a phagocytic feedback that drives macrophage clustering in vitro. Given that solid tumours remain challenging for immunotherapies, durable anti-tumour responses here illustrate unexpected advantages in maximizing net phagocytic activity.


Author(s):  
Qiao Lin ◽  
Nadine Allanic ◽  
Rémi Deterre ◽  
Pierre Mousseau ◽  
Manuel Girault

2021 ◽  
Author(s):  
Mohammad Nejatian ◽  
Diako Khodaei ◽  
Hassan Ahmadi Gavlighi ◽  
Azizollaah Zargaraan

Abstract The seeds from bitter orange, a by-product from the juice making step, hold the potential to facilitate novel, easy yet high quality pectin extraction. To test this hypothesis, the pectin from orange seeds (OSP) were extracted by distilled water and its compositional parameters and rheological behavior then evaluated. Results showed that galacturonic acid was the major component of OSP (~ 425 mg/g) confirming the purity of extracted pectin, followed by glucose and some minor neutral sugars. Mw, Rn and, Rz for the OSP were 4511.8 (kDa), 61 (nm), and 61.1 (nm), respectively. Rheological measurements showed shear-thinning behavior for OSP that by increasing temperature from 5 to 45 oC, the viscosity of the gum decreased. Power law fitted as the best rheological model describing the flow behavior of OSP. Strain sweep dynamic rheological measurements confirmed an entangled network structure for OSP and the addition of NaCl to the gum dispersion, decreased the consistency coefficient from 35.6 to 23.18 Pa.sn, while the flow behavior index remained unchanged. These results demonstrate for the first time that the OSP can be used as a new source of pectin, with likely a wide range of applications in food industry.


Author(s):  
Khaled Almansour ◽  
Iman M. Alfagih ◽  
Ahmed O. Shalash ◽  
Katrina Brockbank ◽  
Raisuddin Ali ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12207
Author(s):  
Joanna Niesiobędzka ◽  
Ewa Głowińska ◽  
Janusz Datta

This study concerns bio-based urethane prepolymers. The relationship between the chemical structure and the thermal and processing parameters of bio-based isocyanate-terminated ether and ester-urethane prepolymers was investigated. Bio-based prepolymers were obtained with the use of bio-monomers such as bio-based diisocyanate, bio-based polyether polyol or polyester polyols. In addition to their composition, the bio-based prepolymers were different in the content of iso-cyanate groups content (ca. 6 and 8%). The process of pre-polymerization and the obtained bio-based prepolymers were analyzed by determining the content of unreacted NCO groups, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, thermogravimetry, and rheological measurements. The research conducted facilitated the evaluation of the properties and processability of urethane prepolymers based on natural components. The results indicate that a significant impact on the processability has the origin the polyol ingredient as well as the NCO content. The thermal stability of all of the prepolymers is similar. A prepolymer based on a poly-ether polyol is characterized by a lower viscosity at a lower temperature than the prepolymer based on a polyester polyol. The viscosity value depends on the NCO content.


Author(s):  
M. C. Collivignarelli ◽  
M. Carnevale Miino ◽  
S. Bellazzi ◽  
F. M. Caccamo ◽  
A. Durante ◽  
...  

Abstract The process operation of wastewater treatment plants (WWTPs) is based on the proper set up of several physical, chemical and biological parameters. Often, issues and problems arising in the process are strictly linked to the rheological behaviour of sewage sludge (SeS). Therefore, rheological measurements, which recently have captured a growing interest, represent an important aspect to consider in the design and operation of WWTPs, especially in the sludge-handling processes. The knowledge of rheological behaviour of SeS represents a crucial step to better understands its flow behaviour and therefore optimize the performance of the processes, minimizing the costs. The SeS are non-Newtonian fluids and, to date, Bingham and Ostwald models are the most applied. This work presents an overview of scientific literature about the rheological properties of SeS and discusses the importance of its knowledge for the management of WWTPs.


Sign in / Sign up

Export Citation Format

Share Document