Synthesis of uniformly distributed carbon nanotubes on a large area of Si substrates by thermal chemical vapor deposition

1999 ◽  
Vol 75 (12) ◽  
pp. 1721-1723 ◽  
Author(s):  
Cheol Jin Lee ◽  
Dae Woon Kim ◽  
Tae Jae Lee ◽  
Young Chul Choi ◽  
Young Soo Park ◽  
...  
2000 ◽  
Vol 621 ◽  
Author(s):  
Cheol J. Lee ◽  
Jung H. Park ◽  
Kwon H. Son ◽  
Dae W. Kim ◽  
Tae J. Lee ◽  
...  

ABSTRACTWe have grown vertically aligned carbon nanotubes on a large area of Co-Ni codeposited Si substrates by thermal chemical vapor deposition using C2H2 gas. The carbon nanotubes grown by the thermal chemical vapor deposition are multi-wall structure, and the wall surface of nanotubes is covered with defective graphite sheets or carbonaceous particles. The carbon nanotubes range from 50 to 120 nm in diameter and about 130 μm in length at 950 °C. Steric hindrance between nanotubes at an initial stage of the growth forces nanotubes to align vertically. The turn-on voltage was about 0.8 V/μm with a current density of 0.1 μA/cm2 and emission current reveals the Fowler-Nordheim mode.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Myung Gwan Hahm ◽  
Young-Kyun Kwon ◽  
Ahmed Busnaina ◽  
Yung Joon Jung

Due to their unique one-dimensional nanostructure along with excellent mechanical, electrical, and optical properties, carbon nanotubes (CNTs) become a promising material for diverse nanotechnology applications. However, large-scale and structure controlled synthesis of CNTs still have many difficulties due to the lack of understanding of the fundamental growth mechanism of CNTs, as well as the difficulty of controlling atomic-scale physical and chemical reactions during the nanotube growth process. Especially, controlling the number of graphene wall, diameter, and chirality of CNTs are the most important issues that need to be solved to harness the full potential of CNTs. Here we report the large-scale selective synthesis of vertically aligned single walled carbon nanotubes (SWNTs) and double walled carbon nanotubes (DWNTs) by controlling the size of catalyst nanoparticles in the highly effective oxygen assisted thermal chemical vapor deposition (CVD) process. We also demonstrate a simple but powerful strategy for synthesizing ultrahigh density and diameter selected vertically aligned SWNTs through the precise control of carbon flow during a thermal CVD process.


Sign in / Sign up

Export Citation Format

Share Document