Variable high-energy γ-ray emission from pulsar wind nebulae

2001 ◽  
Author(s):  
Mallory S. E. Roberts
2020 ◽  
Vol 494 (3) ◽  
pp. 4357-4370
Author(s):  
B Olmi ◽  
D F Torres

ABSTRACT Identification and characterization of a rapidly increasing number of pulsar wind nebulae is, and will continue to be, a challenge of high-energy gamma-ray astrophysics. Given that such systems constitute -by far- the most numerous expected population in the TeV regime, such characterization is important not only to learn about the sources per se from an individual and population perspective, but also to be able to connect them with observations at other frequencies, especially in radio and X-rays. Also, we need to remove the emission from nebulae in highly confused regions of the sky for revealing other underlying emitters. In this paper, we present a new approach for theoretical modelling of pulsar wind nebulae: a hybrid hydrodynamic-radiative model able to reproduce morphological features and spectra of the sources, with relatively limited numerical cost.


2020 ◽  
Vol 644 ◽  
pp. L4
Author(s):  
P. Bordas ◽  
X. Zhang

Pulsar wind nebulae (PWNe) produced from supersonic runaway pulsars can render extended X-ray structures in the form of tails and prominent jets. In this Letter, we report on the analysis of ∼130 ks observations of the PWN around PSR J1135–6055 that were obtained with the Chandra satellite. The system displays bipolar jet-like structures of uncertain origin, a compact nebula around the pulsar likely formed by the bow shock ahead of it, and a trailing tail produced by the pulsar fast proper motion. The spectral and morphological properties of these structures reveal strong similarities with the PWNe in other runaway pulsars, such as PSR J1509–5850 and Geminga. We discuss their physical origin considering both canonical PWN and jet formation models as well as alternative scenarios that can also yield extended jet-like features following the escape of high-energy particles into the ambient magnetic field.


2020 ◽  
Vol 898 (2) ◽  
pp. 117 ◽  
Author(s):  
M. G. Aartsen ◽  
M. Ackermann ◽  
J. Adams ◽  
J. A. Aguilar ◽  
M. Ahlers ◽  
...  

2018 ◽  
Vol 612 ◽  
pp. A2 ◽  
Author(s):  
◽  
H. Abdalla ◽  
A. Abramowski ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

The nine-year H.E.S.S. Galactic Plane Survey (HGPS) has yielded the most uniform observation scan of the inner Milky Way in the TeV gamma-ray band to date. The sky maps and source catalogue of the HGPS allow for a systematic study of the population of TeV pulsar wind nebulae found throughout the last decade. To investigate the nature and evolution of pulsar wind nebulae, for the first time we also present several upper limits for regions around pulsars without a detected TeV wind nebula. Our data exhibit a correlation of TeV surface brightness with pulsar spin-down power Ė. This seems to be caused both by an increase of extension with decreasing Ė, and hence with time, compatible with a power law RPWN(Ė) ~Ė−0.65±0.20, and by a mild decrease of TeV gamma-ray luminosity with decreasing Ė, compatible with L1−10 TeV ~Ė0.59±0.21. We also find that the offsets of pulsars with respect to the wind nebula centre with ages around 10  kyr are frequently larger than can be plausibly explained by pulsar proper motion and could be due to an asymmetric environment. In the present data, it seems that a large pulsar offset is correlated with a high apparent TeV efficiency L1−10 TeV∕Ė. In addition to 14 HGPS sources considered firmly identified pulsar wind nebulae and 5 additional pulsar wind nebulae taken from literature, we find 10 HGPS sources that are likely TeV pulsar wind nebula candidates. Using a model that subsumes the present common understanding of the very high-energy radiative evolution of pulsar wind nebulae, we find that the trends and variations of the TeV observables and limits can be reproduced to a good level, drawing a consistent picture of present-day TeV data and theory.


2012 ◽  
Author(s):  
O. Tibolla ◽  
M. Vorster ◽  
O. de Jager ◽  
S. E. S. Ferreira ◽  
S. Kaufmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document