pulsar wind nebulae
Recently Published Documents


TOTAL DOCUMENTS

281
(FIVE YEARS 58)

H-INDEX

36
(FIVE YEARS 6)

2021 ◽  
Vol 923 (2) ◽  
pp. 208
Author(s):  
Siddhartha Gupta ◽  
Damiano Caprioli ◽  
Colby C. Haggerty

Abstract A strong super-Alfvénic drift of energetic particles (or cosmic rays) in a magnetized plasma can amplify the magnetic field significantly through nonresonant streaming instability (NRSI). While the traditional analysis is done for an ion current, here we use kinetic particle-in-cell simulations to study how the NRSI behaves when it is driven by electrons or by a mixture of electrons and positrons. In particular, we characterize the growth rate, spectrum, and helicity of the unstable modes, as well the level of the magnetic field at saturation. Our results are potentially relevant for several space/astrophysical environments (e.g., electron strahl in the solar wind, at oblique nonrelativistic shocks, around pulsar wind nebulae), and also in laboratory experiments.


2021 ◽  
Vol 922 (2) ◽  
pp. 221
Author(s):  
Ruo-Yu Liu ◽  
Xiang-Yu Wang

Abstract Recently, two photons from the Crab Nebula with energy of approximately 1 PeV were detected by the Large High Altitude Air Shower Observatory (LHAASO), opening an ultrahigh-energy window for studying pulsar wind nebulae (PWNe). Remarkably, the LHAASO spectrum at the highest-energy end shows a possible hardening, which could indicate the presence of a new component. A two-component scenario with a main electron component and a secondary proton component has been proposed to explain the whole spectrum of the Crab Nebula, requiring a proton energy of 1046–1047 erg remaining in the present Crab Nebula. In this paper, we study the energy content of relativistic protons in pulsar winds using the LHAASO data of the Crab Nebula, considering the effect of diffusive escape of relativistic protons. Depending on the extent of the escape of relativistic protons, the total energy of protons lost in the pulsar wind could be 10–100 times larger than that remaining in the nebula presently. We find that the current LHAASO data allow up to (10–50)% of the spindown energy of pulsars being converted into relativistic protons. The escaping protons from PWNe could make a considerable contribution to the cosmic-ray flux of 10–100 PeV. We also discuss the leptonic scenario for the possible spectral hardening at PeV energies.


2021 ◽  
Vol 2021 (12) ◽  
pp. 014
Author(s):  
Luca Orusa ◽  
Silvia Manconi ◽  
Fiorenza Donato ◽  
Mattia Di Mauro

Abstract The cosmic-ray flux of positrons is measured with high precision by the space-borne particle spectrometer AMS-02. The hypothesis that pulsar wind nebulae (PWNe) can significantly contribute to the excess of the positron (e+) cosmic-ray flux has been consolidated after the observation of a γ-ray emission at TeV energies of a few degree size around Geminga and Monogem PWNe. In this work we undertake massive simulations of galactic pulsars populations, adopting different distributions for their position in the Galaxy, intrinsic physical properties, pair emission models, in order to overcome the incompleteness of the ATNF catalog. We fit the e+ AMS-02 data together with a secondary component due to collisions of primary cosmic rays with the interstellar medium. We find that several mock galaxies have a pulsar population able to explain the observed e+ flux, typically by few, bright sources. We determine the physical parameters of the pulsars dominating the e+ flux, and assess the impact of different assumptions on radial distributions, spin-down properties, Galactic propagation scenarios and e+ emission time.


2021 ◽  
Vol 923 (2) ◽  
pp. 211
Author(s):  
J. Kijak ◽  
R. Basu ◽  
W. Lewandowski ◽  
K. Rożko

Abstract We have estimated flux densities of several pulsars from radio interferometric observations mainly at 325 MHz using the Giant Metrewave Radio Telescope. The new observations allowed us to update the spectral nature of the observed pulsars, and in six sources we identified relatively high frequency turnovers, which can be classified as new GHz-peaked spectrum (GPS) pulsars. For such objects the turnover in the spectrum is most likely caused by absorption in the immediate vicinity of the pulsar (or in the interstellar medium). We modeled the turnover spectra using the thermal free–free absorption model and the physical parameters obtained from the fits enabled us to identify the environments that could potentially be responsible for the observed absorption, such as pulsar wind nebulae, supernova remnant nebulae or H ii regions. The discovery of 6 new GPS pulsars brings the total number of such objects to 33 and we discuss the properties of the entire sample.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012020
Author(s):  
K P Levenfish ◽  
G A Ponomaryov ◽  
A E Petrov ◽  
A M Bykov ◽  
A M Krassilchtchikov

Abstract We show that even the slow (subsonic) motion of pulsar wind nebulae (PWNe) relative to an ambient matter has a significant impact on their observables. The motion changes the appearance of nebulae on X-ray images, comparing to what would be observed for a nebula at rest. Accounting for the relative motion is necessary to avoid misinterpretation of the structure of the nebulae when analyzing their X-ray morphology. The motion also introduces some extra time scales in variability of non-thermal high-energy emission of PWNe and allows to reproduce a number of their structures that are not explained by stationary nebula models.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012021
Author(s):  
G A Ponomaryov ◽  
K P Levenfish ◽  
A E Petrov

Abstract X-ray observations show that a jet and a counter-jet in pulsar wind nebulae often differ one from another. Sometimes one of the jets is not observed at all. We show that the most likely reason for this difference is the relative motion of a pulsar and an ambient matter. Even the slow (subsonic or transonic) ambient matter stream in the pulsar rest frame strongly affects the jets, making the windward jet bright and dynamic, and the leeward jet dim and diffuse. The effect is illustrated using a relativistic MHD model of a double-torus pulsar wind nebula. The model is shown to explain reasonably well the observational appearance of the jets in the Vela nebula - a double-torus object which evolves in a transonic stream initiated by the passage of the reverse shock of the parent supernova.


Author(s):  
R Bandiera ◽  
N Bucciantini ◽  
J Martín ◽  
B Olmi ◽  
D F Torres

Abstract Understanding the evolution of a supernova remnant shell in time is fundamental. Such understanding is critical to build reliable models of the dynamics of the supernova remnant shell interaction with any pulsar wind nebula it might contain. Here, we perform a large study of the parameter space for the one-dimensional spherically symmetric evolution of a supernova remnant, accompanying it by analytical analysis. Assuming, as is usual, an ejecta density profile with a power-law core and an envelope, and a uniform ambient medium, we provide a set of highly-accurate approximations for the evolution of the main structural features of supernova remnants, such as the reverse and forward shocks and the contact discontinuity. We compare our results with previously adopted approximations, showing that existing simplified prescriptions can easily lead to large errors. In particular, in the context of pulsar wind nebulae modelling, an accurate description for the supernova remnant reverse shock is required. We also study in depth the self-similar solutions for the initial phase of evolution, when the reverse shock propagates through the envelope of the ejecta. Since these self-similar solutions are exact, but not fully analytical, we here provide highly-accurate approximations as well.


Author(s):  
Kohta Murase ◽  
Conor M B Omand ◽  
Deanne L Coppejans ◽  
Hiroshi Nagai ◽  
Geoffrey C Bower ◽  
...  

Abstract Fast-rotating pulsars and magnetars have been suggested as the central engines of super-luminous supernovae (SLSNe) and fast radio bursts, and this scenario naturally predicts non-thermal synchrotron emission from their nascent pulsar wind nebulae (PWNe). We report results of high-frequency radio observations with ALMA and NOEMA for three SLSNe (SN 2015bn, SN 2016ard, and SN 2017egm), and present a detailed theoretical model to calculate non-thermal emission from PWNe with an age of ∼1 − 3 yr. We find that the ALMA data disfavors a PWN model motivated by the Crab nebula for SN 2015bn and SN 2017egm, and argue that this tension can be resolved if the nebular magnetization is very high or very low. Such models can be tested by future MeV-GeV gamma-ray telescopes such as AMEGO.


2021 ◽  
Vol 653 ◽  
pp. A62
Author(s):  
G. Castelletti ◽  
L. Supan ◽  
W. M. Peters ◽  
N. E. Kassim

We present new images and continuum spectral analysis for 14 resolved Galactic supernova remnants (SNRs) selected from the 74 MHz Very Large Array Low-Frequency Sky Survey Redux (VLSSr). We combine new integrated measurements from the VLSSr with, when available, flux densities extracted from the Galactic and Extragalactic All-Sky Murchison Widefield Array Survey and measurements from the literature to generate improved integrated continuum spectra sampled from ~15 MHz to ~217 GHz. We present the VLSSr images. When possible we combine them with publicly available images at 1.4 GHz, to analyse the resolved morphology and spectral index distribution across each SNR. We interpret the results and look for evidence of thermal absorption caused by ionised gas either proximate to the SNR itself, or along its line of sight. Three of the SNRs, G4.5+6.8 (Kepler), G28.6−0.1, and G120.1+1.4 (Tycho), have integrated spectra which can be adequately fit with simple power laws. The resolved spectral index map for Tycho confirms internal absorption which was previously detected by the Low Frequency Array, but it is insufficient to affect the fit to the integrated spectrum. Two of the SNRs are pulsar wind nebulae, G21.5−0.9 and G130.7+3.1 (3C 58). For those we identify high-frequency spectral breaks at 38 and 12 GHz, respectively. For the integrated spectra of the remaining nine SNRs, a low frequency spectral turnover is necessary to adequately fit the data. In all cases we are able to explain the turnover by extrinsic thermal absorption. For G18.8+0.3 (Kes 67), G21.8−0.6 (Kes 69), G29.7−0.3 (Kes 75), and G41.1−0.3 (3C 397), we attribute the absorption to ionised gas along the line of sight, possibly from extended H II region envelopes. For G23.3−0.3 (W41) the absorption can be attributed to H II regions located in its immediate proximity. Thermal absorption from interactions at the ionised interface between SNR forward shocks and the surrounding medium were previously identified as responsible for the low frequency turnover in SNR G31.9+0.0 (3C 391); our integrated spectrum is consistent with the previous results. We present evidence for the same phenomenon in three additional SNRs G27.4+0.0 (Kes 73), G39.2–0.3 (3C 396), and G43.3–0.2 (W49B), and derive constraints on the physical properties of the interaction. This result indicates that interactions between SNRs and their environs should be readily detectable through thermal absorption by future low frequency observations of SNRs with improved sensitivity and resolution.


Sign in / Sign up

Export Citation Format

Share Document