Influence of structural inhomogeneity on the luminescence properties of silicon nanocrystallites

2002 ◽  
Vol 28 (8) ◽  
pp. 706-712
Author(s):  
I. V. Blonskiı̆ ◽  
M. S. Brodyn ◽  
A. Yu. Vakhnin ◽  
A. Ya. Zhugayevych ◽  
V. M. Kadan ◽  
...  
Author(s):  
J W Steeds

There is a wide range of experimental results related to dislocations in diamond, group IV, II-VI, III-V semiconducting compounds, but few of these come from isolated, well-characterized individual dislocations. We are here concerned with only those results obtained in a transmission electron microscope so that the dislocations responsible were individually imaged. The luminescence properties of the dislocations were studied by cathodoluminescence performed at low temperatures (~30K) achieved by liquid helium cooling. Both spectra and monochromatic cathodoluminescence images have been obtained, in some cases as a function of temperature.There are two aspects of this work. One is mainly of technological significance. By understanding the luminescence properties of dislocations in epitaxial structures, future non-destructive evaluation will be enhanced. The second aim is to arrive at a good detailed understanding of the basic physics associated with carrier recombination near dislocations as revealed by local luminescence properties.


2019 ◽  
Vol 14 (5) ◽  
pp. 496-500 ◽  
Author(s):  
Chunyang Li ◽  
Xiaodi Du ◽  
Yurong Shi ◽  
Zhenling Wang

2020 ◽  
Vol 65 (3) ◽  
pp. 236
Author(s):  
R. M. Rudenko ◽  
O. O. Voitsihovska ◽  
V. V. Voitovych ◽  
M. M. Kras’ko ◽  
A. G. Kolosyuk ◽  
...  

The process of crystalline silicon phase formation in tin-doped amorphous silicon (a-SiSn) films has been studied. The inclusions of metallic tin are shown to play a key role in the crystallization of researched a-SiSn specimens with Sn contents of 1–10 at% at temperatures of 300–500 ∘C. The crystallization process can conditionally be divided into two stages. At the first stage, the formation of metallic tin inclusions occurs in the bulk of as-precipitated films owing to the diffusion of tin atoms in the amorphous silicon matrix. At the second stage, the formation of the nanocrystalline phase of silicon occurs as a result of the motion of silicon atoms from the amorphous phase to the crystalline one through the formed metallic tin inclusions. The presence of the latter ensures the formation of silicon crystallites at a much lower temperature than the solid-phase recrystallization temperature (about 750 ∘C). A possibility for a relation to exist between the sizes of growing silicon nanocrystallites and metallic tin inclusions favoring the formation of nanocrystallites has been analyzed.


2016 ◽  
Vol 31 (10) ◽  
pp. 1068 ◽  
Author(s):  
WANG Mei-Ling ◽  
XU Jia-Yue ◽  
ZHANG Yan ◽  
CHU Yao-Qing ◽  
YANG Bo-Bo ◽  
...  

Author(s):  
Dm. A. Pomogailo ◽  
M. G. Spirin ◽  
V. M. Skobeeva ◽  
G. I. Dzhardimalieva ◽  
S. I. Pomogailo ◽  
...  

2020 ◽  
Vol 13 (6) ◽  
pp. 1-9
Author(s):  
ZHAO Hai-qin ◽  
◽  
WANG Lin-xiang ◽  
TUO Juan ◽  
YE Ying ◽  
...  

2020 ◽  
Vol 41 (10) ◽  
pp. 1234-1240
Author(s):  
Li-hui HUANG ◽  
◽  
Jing-tao ZHAO ◽  
Shi-long ZHAO ◽  
Shi-qing XU

Sign in / Sign up

Export Citation Format

Share Document