glass ceramics
Recently Published Documents





2022 ◽  
Vol 580 ◽  
pp. 121386
S.K. Evstropiev ◽  
A.V. Shashkin ◽  
N.B. Кnyazyan ◽  
G.G. Маnukyan ◽  
V.V. Bagramyan ◽  

2022 ◽  
Vol 579 ◽  
pp. 121377
Hai Lin ◽  
Huijuan Jia ◽  
Lina Zhou ◽  
Na Li ◽  
Bingyan Liu ◽  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 657
Lishun Chen ◽  
Yuting Long ◽  
Mingkai Zhou ◽  
Huaide Wang

In this work, more than 70 wt % of ferromanganese slag (containing 40 wt % CaO) was used to synthesize high-calcium, CaO-MgO-Al2O3-SiO2 (CMAS) glass ceramics. The effect of SiO2/CaO on the structure, crystallization behavior and microstructure of high-calcium, CMAS, slag glass ceramics was studied by IR, NMR, DSC, XRD and SEM. The results showed that in the high-calcium, CMAS glass ceramics, the main existing forms of silicon–oxygen tetrahedra (Qn) were Q0 and Q1. With the increase in the SiO2/CaO, Qn changed from Q0 and Q1 (main units) to Q1 (main units) and Q2, and then to Q1 and Q2 (main units). The polymerization degree of Qn changed from low to high, making the glass more stable, which led to the increase in crystallization temperature and the decrease in crystallization kinetic constant (k) and frequency factor (υ). At the same time, the change in the Qn structure resulted in a gradual change to the main crystal, from akermanite to diopside–wollastonite.

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 259
Natalia Pawlik ◽  
Barbara Szpikowska-Sroka ◽  
Tomasz Goryczka ◽  
Ewa Pietrasik ◽  
Wojciech A. Pisarski

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol–gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol–gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6–3)) and Eu3+ (5D0 → 7FJ (J = 0–4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 109
Haijian Li ◽  
Hao Zou ◽  
Zhihua Sun ◽  
Yi Xu ◽  
Changjian Wang ◽  

The composition, structure, and thermal behaviors of yttrium-containing phosphate glasses were studied in this work, and the glass-ceramics were prepared via the two-step crystallization method. The XRD and SEM-EDS results show the forming range of the phosphate glass system and the formation of YPO4 (xenotime) due to the addition of excessive Y2O3. The spectroscopic characterization of these glasses presented shifts of the infrared and Raman bands, demonstrating the depolymerization of the glass network and the formation of novel P–O–Y bonds, and the deconvoluted Raman spectra also exhibited the occurrence of the disproportionation reaction in the glass melting process. The content of non-bridging oxygen (NBOs) from the UV–vis spectra first increased and then decreased with increasing Y2O3. The thermal behaviors show that the Y2O3 reduced the crystallization peak temperature and the thermal stability of the glasses. The crystalline behaviors of the phosphate glass matrix were investigated at different crystallization times of 2–10 h, and a transformation of the crystallization mechanism from surface to volume crystallization was found. The yttrium phosphate glass-ceramics crystallized for 10 h exhibited transformation of the main crystalline phases with increasing Y2O3, and the grain-oriented crystalline surface became irregular.

2022 ◽  
Vol 8 ◽  
Memoona Akhtar ◽  
Syed Ahmed Uzair ◽  
Muhammad Rizwan ◽  
Muhammad Atiq Ur Rehman

Bioceramic coatings on metallic implants provide a wear-resistant and biocompatible layer, that own ability to develop bone-like apatite in physiological environments to ensure bonding with hard tissues. These bioceramics primarily belong to Calcium Phosphates (CaPs), bioactive glasses, and glass-ceramics. Several techniques are used to deposit these coatings such as; electrophoretic deposition (EPD), plasma spray (PS), and Radio frequency magnetron sputtering (RFMS). Most of these techniques require a high-temperature operation or sintering treatment. This causes either thermal decomposition of bioceramic or results in delamination and cracking of the bioceramic coating due to differences in thermal expansion behavior of metals and bioceramics. RFMS is primarily carried out either at room temperature. However, annealing is performed or substrate is heated at various temperatures ∼400–1,200°C for 2 or 4 h under dry argon (very low temperature compared to other techniques) to ensure crystallization of bioceramics and improve coating adhesion. Chemical composition stability and excellent surface finish are the premium features of RFMS, due to less heat involvement. Moreover, RFMS has the unique ability to develop one-unit/ multilayered composite coatings and the flexibility of in-situ reactions to yield oxides and nitrides. Single or multiple targets can be employed with the insertion of Oxygen and Nitrogen to yield versatile coatings. Due to this attractive set of features RFMS has a strong potential in the field of bioceramic coatings. In recent years, several multifunctional bioceramic coatings have been deposited on metallic substrates using RFMS for biomedical applications. This review focuses on the recent efforts made in order to deposit multifunctional bioceramic RFMS coatings with surface characteristics necessary for biomedical applications and highlights future directions for the improved biological performance of RFMS bioceramic coatings.

Sign in / Sign up

Export Citation Format

Share Document